首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylethanolamine (PE) and cardiolipin (CL) are major components of bacterial and eukaryotic membranes. In bacteria, synthesis of PE usually occurs via decarboxylation of phosphatidylserine (PS) by PS decarboxylases (Psd). CL is produced by various CL synthases (Cls). Membranes of the plant pathogen Xanthomonas campestris predominantly contain PE, phosphatidylglycerol (PG) and CL. The X. campestris genome encodes one Psd and six putative CLs. Deletion of psd resulted in loss of PE and accumulation of PS. The mutant was severely affected in growth and cell size. PE synthesis, growth and cell division were partially restored when cells were supplied with ethanolamine (EA) suggesting a previously unknown PE synthase activity. Via mutagenesis, we identified a Cls enzyme (Xc_0186) responsible for EA‐dependent PE biosynthesis. Xanthomonas lacking xc_0186 not only lost its ability to utilize EA for PE synthesis but also produced less CL suggesting a bifunctional enzyme. Recombinant Xc_0186 in E. coli and in cell‐free extracts uses cytidine diphosphate diacylglycerol (CDP‐DAG) and PG for CL synthesis. It is also able to use CDP‐DAG and EA for PE synthesis. Owing to its dual function in CL and PE production, we consider Xc_0186 the founding member of a new class of enzymes called CL/PE synthase (CL/PEs).  相似文献   

2.
Maintenance of the lipid composition is important for proper function and homeostasis of the mitochondrion. In Trypanosoma brucei, the enzymes involved in the biosynthesis of the mitochondrial phospholipid, phosphatidylglycerol (PG), have not been studied experimentally. We now report the characterization of T. brucei phosphatidylglycerophosphate synthase (TbPgps), the rate‐limiting enzyme in PG formation, which was identified based on its homology to other eukaryotic Pgps. Lipid quantification and metabolic labelling experiments show that TbPgps gene knock‐down results in loss of PG and a reduction of another mitochondria‐specific phospholipid, cardiolipin. Using immunohistochemistry and immunoblotting of digitonin‐isolated mitochondria, we show that TbPgps localizes to the mitochondrion. Moreover, reduced TbPgps expression in T. brucei procyclic forms leads to alterations in mitochondrial morphology, reduction in the amounts of respiratory complexes III and IV and, ultimately, parasite death. Using native polyacrylamide gel electrophoresis we demonstrate for the first time in a eukaryotic organism that TbPgps is a component of a 720 kDa protein complex, co‐migrating with T. brucei cardiolipin synthase and cytochrome c1, a protein of respiratory complex III.  相似文献   

3.
Aminoacyl‐phosphatidylglycerol synthases (aaPGSs) are membrane proteins that utilize aminoacylated tRNAs to modify membrane lipids with amino acids. Aminoacylation of membrane lipids alters the biochemical properties of the cytoplasmic membrane and enables bacteria to adapt to changes in environmental conditions. aaPGSs utilize alanine, lysine and arginine as modifying amino acids, and the primary lipid recipients have heretofore been defined as phosphatidylglycerol (PG) and cardiolipin. Here we identify a new pathway for lipid aminoacylation, conserved in many Actinobacteria, which results in formation of Ala‐PG and a novel alanylated lipid, Alanyl‐diacylglycerol (Ala‐DAG). Ala‐DAG formation in Corynebacterium glutamicum is dependent on the activity of an aaPGS homolog, whereas formation of Ala‐PG requires the same enzyme acting in concert with a putative esterase encoded upstream. The presence of alanylated lipids is sufficient to enhance the bacterial fitness of C. glutamicum cultured in the presence of certain antimicrobial agents, and elucidation of this system expands the known repertoire of membrane lipids acting as substrates for amino acid modification in bacterial cells.  相似文献   

4.
Sphingomyelin is the main sphingolipid in Trypanosoma brucei, the causative agent of African sleeping sickness. In vitro and in vivo characterization of the T. brucei neutral sphingomyelinase demonstrates that it is directly involved in sphingomyelin catabolism. Gene knockout studies in the bloodstream form of the parasite indicate that the neutral sphingomyelinase is essential for growth and survival, thus highlighting that the de novo biosynthesis of ceramide is unable to compensate for the loss of sphingomyelin catabolism. The phenotype of the conditional knockout has given new insights into the highly active endocytic and exocytic pathways in the bloodstream form of T. brucei. Hence, the formation of ceramide in the endoplasmic reticulum affects post‐Golgi sorting and rate of deposition of newly synthesized GPI‐anchored variant surface glycoprotein on the cell surface. This directly influences the corresponding rate of endocytosis, via the recycling endosomes, of pre‐existing cell surface variant surface glycoprotein. The trypanosomes use this coupled endocytic and exocytic mechanism to maintain the cell density of its crucial variant surface glycoprotein protective coat. TbnSMase is therefore genetically validated as a drug target against African trypanosomes, and suggests that interfering with the endocytic transport of variant surface glycoprotein is a highly desirable strategy for drug development against African trypanosomasis.  相似文献   

5.
Cytidinediphosphate diacylglycerol synthase (CDS) uses phosphatidic acid (PA) and cytidinetriphosphate to produce cytidinediphosphate‐diacylglycerol, an intermediate for phosphatidylglycerol (PG) and phosphatidylinositol (PI) synthesis. This study shows that CDS5, one of the five CDSs of the Oryza sativa (rice) genome, has multifaceted effects on plant growth and stress responses. The loss of CDS5 resulted in a decrease in PG and PI levels, defective thylakoid membranes, pale leaves in seedlings and growth retardation. In addition, the loss of CDS5 led to an elevated PA level and enhanced hyperosmotic tolerance. The inhibition of phospholipase D (PLD)‐derived PA formation in cds5 restored the hyperosmotic stress tolerance of the mutant phenotype to that of the wild type, suggesting that CDS5 functions as a suppressor in PLD‐derived PA signaling and negatively affects hyperosmotic stress tolerance.  相似文献   

6.
The causative agent of human African trypanosomiasis, Trypanosoma brucei, lacks de novo purine biosynthesis and depends on purine salvage from the host. The purine salvage pathway is redundant and contains two routes to guanosine‐5′‐monophosphate (GMP) formation: conversion from xanthosine‐5′‐monophosphate (XMP) by GMP synthase (GMPS) or direct salvage of guanine by hypoxanthine‐guanine phosphoribosyltransferase (HGPRT). We show recombinant T. brucei GMPS efficiently catalyzes GMP formation. Genetic knockout of GMPS in bloodstream parasites led to depletion of guanine nucleotide pools and was lethal. Growth of gmps null cells was only rescued by supraphysiological guanine concentrations (100 μM) or by expression of an extrachromosomal copy of GMPS. Hypoxanthine was a competitive inhibitor of guanine rescue, consistent with a common uptake/metabolic conversion mechanism. In mice, gmps null parasites were unable to establish an infection demonstrating that GMPS is essential for virulence and that plasma guanine is insufficient to support parasite purine requirements. These data validate GMPS as a potential therapeutic target for treatment of human African trypanosomiasis. The ability to strategically inhibit key metabolic enzymes in the purine pathway unexpectedly bypasses its functional redundancy by exploiting both the nature of pathway flux and the limited nutrient environment of the parasite's extracellular niche.  相似文献   

7.
Developing a robust root system is crucial to plant survival and competition for soil resources. Here we report that the non‐specific phospholipase C5 (NPC5) and its derived lipid mediator diacylglycerol (DAG) mediate lateral root (LR) development during salt stress in Arabidopsis thaliana. T‐DNA knockout mutant npc5‐1 produced few to no LR under mild NaCl stress, whereas overexpression of NPC5 increased LR number. Roots of npc5‐1 contained a lower level of DAG than wild type, whereas NPC5 overexpressor exhibited an increase in DAG level. Application of DAG, but not phosphatidic acid, fully restored LR growth of npc5‐1 to that of wild type under NaCl stress. NPC5 expression was significantly induced in Arabidopsis seedlings treated with NaCl. Npc5‐1 was less responsive to auxin‐mediated root growth than the wild type. These results indicate that NPC5 mediates LR development in response to salt stress and suggest that DAG functions as a lipid mediator in the stress signalling.  相似文献   

8.
We describe a novel biosynthetic pathway for glycerophosphoinositides in Rhodothermus marinus in which inositol is activated by cytidine triphosphate (CTP); this is unlike all known pathways that involve activation of the lipid group instead. This work was motivated by the detection in the R. marinus genome of a gene with high similarity to CTP:L‐myo‐inositol‐1‐phosphate cytidylyltransferase, the enzyme that synthesizes cytidine diphosphate (CDP)‐inositol, a metabolite only known in the synthesis of di‐myo‐inositol phosphate. However, this solute is absent in R. marinus. The fate of radiolabelled CDP‐inositol was investigated in cell extracts to reveal that radioactive inositol was incorporated into the chloroform‐soluble fraction. Mass spectrometry showed that the major lipid product has a molecular mass of 810 Da and contains inositol phosphate and alkyl chains attached to glycerol by ether bonds. The occurrence of ether‐linked lipids is rare in bacteria and has not been described previously in R. marinus. The relevant synthase was identified by functional expression of the candidate gene in Escherichia coli. The enzyme catalyses the transfer of L‐myo‐inositol‐1‐phosphate from CDP‐inositol to dialkylether glycerol yielding dialkylether glycerophosphoinositol. Database searching showed homologous proteins in two bacterial classes, Sphingobacteria and Alphaproteobacteria. This is the first report of the involvement of CDP‐inositol in phospholipid synthesis.  相似文献   

9.
De novo synthesis of threonine from aspartate occurs via the β‐aspartyl phosphate pathway in plants, bacteria and fungi. However, the Trypanosoma brucei genome encodes only the last two steps in this pathway: homoserine kinase (HSK) and threonine synthase. Here, we investigated the possible roles for this incomplete pathway through biochemical, genetic and nutritional studies. Purified recombinant TbHSK specifically phosphorylates L‐homoserine and displays kinetic properties similar to other HSKs. HSK null mutants generated in bloodstream forms displayed no growth phenotype in vitro or loss of virulence in vivo. However, following transformation into procyclic forms, homoserine, homoserine lactone and certain acyl homoserine lactones (AHLs) were found to substitute for threonine in growth media for wild‐type procyclics, but not HSK null mutants. The tsetse fly is considered to be an unlikely source of these nutrients as it feeds exclusively on mammalian blood. Bioinformatic studies predict that tsetse endosymbionts possess part (up to homoserine in Wigglesworthia glossinidia) or all of the β‐aspartyl phosphate pathway (Sodalis glossinidius). In addition S. glossinidius is known to produce 3‐oxohexanoylhomoserine lactone which also supports trypanosome growth. We propose that T. brucei has retained HSK and threonine synthase in order to salvage these nutrients when threonine availability is limiting.  相似文献   

10.
11.
Agrobacterium tumefaciens transfers oncogenic T‐DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl‐phosphatidylglycerol (L‐PG) hydrolase, which modulates L‐PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C‐terminal domain of AcvB (residues 232–456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10‐fold increase in L‐PG in Agrobacterium membranes and abolished T‐DNA transfer and tumor formation. Overproduction of the L‐PG synthase gene (lpiA) in wild‐type A. tumefaciens resulted in a similar increase in the L‐PG content (~7‐fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L‐PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L‐PG content by complementation with different acvB variants revealed that cellular L‐PG levels above 3% of total phospholipids interfere with T‐DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T‐DNA transfer.  相似文献   

12.
Target of rapamycin (TOR) signaling is a nutrient‐sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2‐arachidonoyl‐sn‐glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl‐1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk‐5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p‐S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl‐1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p‐S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging.  相似文献   

13.
Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline‐inducible down‐regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down‐regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth.  相似文献   

14.
15.
The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that drives parasite motility and is receiving increased attention as a potential drug target. In the mammalian host, parasite motility is suspected to contribute to infection and disease pathogenesis. However, it has not been possible to test this hypothesis owing to lack of motility mutants that are viable in the bloodstream life cycle stage that infects the mammalian host. We recently identified a bloodstream‐form motility mutant in 427‐derived T. brucei in which point mutations in the LC1 dynein subunit disrupt propulsive motility but do not affect viability. These mutants have an actively beating flagellum, but cannot translocate. Here we demonstrate that the LC1 point mutant fails to show enhanced cell motility upon increasing viscosity of the surrounding medium, which is a hallmark of wild type T. brucei, thus indicating that motility of the mutant is fundamentally altered compared with wild type cells. We next used the LC1 point mutant to assess the influence of trypanosome motility on infection in mice. Wesurprisingly found that disrupting parasite motility has no discernible effect on T. brucei bloodstream infection. Infection time‐course, maximum parasitaemia, number of waves of parasitaemia, clinical features and disease outcome are indistinguishable between motility mutant and control parasites. Our studies provide an important step toward understanding the contribution of parasite motility to infection and a foundation for future investigations of T. brucei interaction with the mammalian host.  相似文献   

16.
17.
18.
19.
20.
Suramin is one of the first drugs developed in a medicinal chemistry program (Bayer, 1916), and it is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense. Cellular uptake of suramin occurs by endocytosis, and reverse genetic studies with T. b. brucei have linked downregulation of the endocytic pathway to suramin resistance. Here we show that forward selection for suramin resistance in T. brucei spp. cultures is fast, highly reproducible and linked to antigenic variation. Bloodstream‐form trypanosomes are covered by a dense coat of variant surface glycoprotein (VSG), which protects them from their mammalian hosts' immune defenses. Each T. brucei genome contains over 2000 different VSG genes, but only one is expressed at a time. An expression switch to one particular VSG, termed VSGSur, correlated with suramin resistance. Reintroduction of the originally expressed VSG gene in resistant T. brucei restored suramin susceptibility. This is the first report of a link between antigenic variation and drug resistance in African trypanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号