首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The effect of psychoactive drugs on depression has usually been studied in cases of prolonged drug addiction and/or withdrawal, without much emphasis on the effects of subchronic or recreational drug use. To address this issue, we exposed laboratory rats to subchronic regimens of heroin or cocaine and tested long‐term effects on (i) depressive‐like behaviors, (ii) brain‐derived neurotrophic factor (BDNF) levels in reward‐related brain regions, and (iii) depressive‐like behavior following an additional chronic mild stress procedure. The long‐term effect of subchronic cocaine exposure was a general reduction in locomotor activity whereas heroin exposure induced a more specific increase in immobility during the forced swim test. Both cocaine and heroin exposure induced alterations in BDNF levels that are similar to those observed in several animal models of depression. Finally, both cocaine and heroin exposure significantly enhanced the anhedonic effect of chronic mild stress. These results suggest that subchronic drug exposure induces depressive‐like behavior which is accompanied by modifications in BDNF expression and increases the vulnerability to develop depressive‐like behavior following chronic stress. Implications for recreational and small‐scale drug users are discussed.

  相似文献   


3.
4.
5.
Most ingested ethanol is metabolized in the liver to acetaldehyde and then to acetate, which can be oxidized by the brain. This project assessed whether chronic exposure to alcohol can increase cerebral oxidation of acetate. Through metabolism, acetate may contribute to long‐term adaptation to drinking. Two groups of adult male Sprague–Dawley rats were studied, one treated with ethanol vapor and the other given room air. After 3 weeks the rats received an intravenous infusion of [2‐13C]ethanol via a lateral tail vein for 2 h. As the liver converts ethanol to [2‐13C]acetate, some of the acetate enters the brain. Through oxidation the 13C is incorporated into the metabolic intermediate α‐ketoglutarate, which is converted to glutamate (Glu), glutamine (Gln), and GABA. These were observed by magnetic resonance spectroscopy and found to be 13C‐labeled primarily through the consumption of ethanol‐derived acetate. Brain Gln, Glu, and, GABA 13C enrichments, normalized to 13C‐acetate enrichments in the plasma, were higher in the chronically treated rats than in the ethanol‐naïve rats, suggesting increased cerebral uptake and oxidation of circulating acetate. Chronic ethanol exposure increased incorporation of systemically derived acetate into brain Gln, Glu, and GABA, key neurochemicals linked to brain energy metabolism and neurotransmission.

  相似文献   


6.
7.
The cadherin epidermal growth factor (EGF) laminin G (LAG) seven‐pass G‐type receptors (CELSRs) are a special subgroup of adhesion G protein‐coupled receptors, which are pivotal regulators of many biologic processes such as neuronal/endocrine cell differentiation, vessel valve formation, and the control of planar cell polarity during embryonic development. All three members of the CELSR family (CELSR1‐3) have large ecto‐domains that form homophilic interactions and encompass more than 2000 amino acids. Mutations in the ecto‐domain or other gene locations of CELSRs are associated with neural tube defects and other diseases in humans. Celsr knockout (KO) animals have many developmental defects. Therefore, specific agonists or antagonists of CELSR members may have therapeutic potential. Although significant progress has been made regarding the functions and biochemical properties of CELSRs, our knowledge of these receptors is still lacking, especially considering that they are broadly distributed but have few characterized functions in a limited number of tissues. The dynamic activation and inactivation of CELSRs and the presence of endogenous ligands beyond homophilic interactions remain elusive, as do the regulatory mechanisms and downstream signaling of these receptors. Given this motivation, future studies with more advanced cell biology or biochemical tools, such as conditional KO mice, may provide further insights into the mechanisms underlying CELSR function, laying the foundation for the design of new CELSR‐targeted therapeutic reagents.

  相似文献   


8.
9.
Interleukin‐1β (IL‐1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL‐1β production in response to live S. aureus is mediated through the Nod‐like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain), and pro‐caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild‐type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL‐1β, other key inflammatory mediators, including IL‐6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL‐1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL‐1β release and survival during acute CNS S. aureus infection.

  相似文献   


10.
Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2,4‐dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increases intracellular Ca2+ levels and reduces oxidative stress in cerebral cortical neurons. Gene expression profiling of the cerebral cortex of DNP‐treated mice revealed reprogramming of signaling cascades that included suppression of the mammalian target of rapamycin (mTOR) and insulin – PI3K – MAPK pathways, and up‐regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up‐regulated in response to DNP. CREB (cAMP‐response element‐binding protein) signaling, Arc and brain‐derived neurotrophic factor, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up‐regulated in response to DNP, and DNP‐treated mice exhibited improved performance in a test of learning and memory. Immunoblot analysis verified that key DNP‐induced changes in gene expression resulted in corresponding changes at the protein level. Our findings suggest that mild mitochondrial uncoupling triggers an integrated signaling response in brain cells characterized by reprogramming of mTOR and insulin signaling, and up‐regulation of pathways involved in adaptive stress responses, molecular waste disposal, and synaptic plasticity.

  相似文献   


11.
Soluble N‐ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal‐associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA‐transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations.

  相似文献   


12.
Since emotional stress elicits brain activation, mitochondria should be a key component of stressed brain response. However, few studies have focused on mitochondria functioning in these conditions. In this work, we aimed to determine the effects of an acute restraint stress on rat brain mitochondrial functions, with a focus on permeability transition pore (PTP) functioning. Rats were divided into two groups, submitted or not to an acute 30‐min restraint stress (Stress, S‐group, vs. Control, C‐group). Brain was removed immediately after stress. Mitochondrial respiration and enzymatic activities (complex I, complex II, hexokinase) were measured. Changes in PTP opening were assessed by the Ca2+ retention capacity. Cell signaling pathways relevant to the coupling between mitochondria and cell function (adenosine monophosphate‐activated protein kinase, phosphatidylinositol 3‐kinase, glycogen synthase kinase 3 beta, MAPK, and cGMP/NO) were measured. The effect of glucocorticoids was also assessed in vitro. Stress delayed (43%) the opening of PTP and resulted in a mild inhibition of complex I respiratory chain. This inhibition was associated with significant stress‐induced changes in adenosine monophosphate‐activated protein kinase signaling pathway without changes in brain cGMP level. In contrast, glucocorticoids did not modify PTP opening. These data suggest a rapid adaptive mechanism of brain mitochondria in stressed conditions, with a special focus on PTP regulation.

  相似文献   


13.
14.
For over the last 50 years, the molecular mechanism of anti‐psychotic drugs' action has been far from clear. While risperidone is very often used in clinical practice, the most efficient known anti‐psychotic drug is clozapine (CLO). However, the biochemical background of CLO's action still remains elusive. In this study, we performed comparative proteomic analysis of rat cerebral cortex following chronic administration of these two drugs. We observed significant changes in the expression of cytoskeletal, synaptic, and regulatory proteins caused by both antipsychotics. Among other proteins, alterations in collapsin response mediator proteins, CRMP2 and CRMP4, were the most spectacular consequences of treatment with both drugs. Moreover, risperidone increased the level of proteins involved in cell proliferation such as fatty acid‐binding protein‐7 and translin‐associated factor X. CLO significantly up‐regulated the expression of visinin‐like protein 1, neurocalcin δ and mitochondrial, stomatin‐like protein 2, the calcium‐binding proteins regulating calcium homeostasis, and the functioning of ion channels and receptors.

  相似文献   


15.
Intravenous immunoglobulin (IVIG) contains anti‐amyloid‐β antibodies as well as antibodies providing immunomodulatory effects that may modify chronic inflammation in Alzheimer's disease. Answers to important questions about IVIG transport into the central nervous system and assessments of any impact amyloid‐β has on this transport can be provided by in vitro models of the blood–brain barrier. In this study, amyloid‐β[1‐42] was pre‐aggregated into fibrillar or oligomeric structures, and various concentrations were incubated in the brain side of the blood–brain barrier model, followed by IVIG administration in the blood side at the therapeutically relevant concentrations of 5 and 20 mg/mL. IVIG accumulated in the brain side at physiologically relevant levels, with amyloid‐β pre‐incubation increasing IVIG accumulation. The increased transport effect was dependent on amyloid‐β structural form, amyloid‐β concentration, and IVIG dose. IVIG was found to decrease monocyte chemotactic protein‐1 levels 6.5–18% when low amyloid‐β levels were present and increase levels 4.2–23% when high amyloid‐β levels were present. Therefore, the presence, concentration, and structure of amyloid‐β plays an important role in the effect of IVIG therapy in the brain.

  相似文献   


16.
Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT‐1 is responsible for > 90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) remains unknown. In an effort to determine if astrocytes are a locus of cortical dopamine–glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT‐1 protein levels, but had no effect on levels of other glutamate transporters; high‐affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT‐1 gene expression was not altered. Our data suggest that dopamine depletion may lead to post‐translational modifications that result in increased expression and activity of GLT‐1 in PFC astrocytes.

  相似文献   


17.
Intra‐neuronal metabolism of dopamine (DA) begins with production of 3,4‐dihydroxyphenylacetaldehyde (DOPAL), which is toxic. According to the ‘catecholaldehyde hypothesis,’ DOPAL destroys nigrostriatal DA terminals and contributes to the profound putamen DA deficiency that characterizes Parkinson's disease (PD). We tested the feasibility of using post‐mortem patterns of putamen tissue catechols to examine contributions of altered activities of the type 2 vesicular monoamine transporter (VMAT2) and aldehyde dehydrogenase (ALDH) to the increased DOPAL levels found in PD. Theoretically, the DA : DOPA concentration ratio indicates vesicular uptake, and the 3,4‐dihydroxyphenylacetic acid : DOPAL ratio indicates ALDH activity. We validated these indices in transgenic mice with very low vesicular uptake (VMAT2‐Lo) or with knockouts of the genes encoding ALDH1A1 and ALDH2 (ALDH1A1,2 KO), applied these indices in PD putamen, and estimated the percent decreases in vesicular uptake and ALDH activity in PD. VMAT2‐Lo mice had markedly decreased DA:DOPA (50 vs. 1377, p < 0.0001), and ALDH1A1,2 KO mice had decreased 3,4‐dihydroxyphenylacetic acid:DOPAL (1.0 vs. 11.2, p < 0.0001). In PD putamen, vesicular uptake was estimated to be decreased by 89% and ALDH activity by 70%. Elevated DOPAL levels in PD putamen reflect a combination of decreased vesicular uptake of cytosolic DA and decreased DOPAL detoxification by ALDH.

  相似文献   


18.
Gain‐of‐toxic‐function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N‐glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N‐glycosylation of Seipin on synaptic transmission by over‐expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over‐expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post‐synaptic currents and miniature inhibitory post‐synaptic currents. The amplitude of both evoked excitatory post‐synaptic currents and inhibitory post‐synaptic current is also compromised by mutant Seipin over‐expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over‐expressing Seipin‐N88S, whereas neither γ‐amino butyric acid (GABA) nor α‐Amino‐3‐hydroxy‐5‐methyl‐4‐ isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin‐N88S‐expressing neurons. These data demonstrate that Seipin‐N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.

  相似文献   


19.
A major hallmark feature of Alzheimer's disease is the accumulation of amyloid β (Aβ), whose formation is regulated by the γ‐secretase complex and its activating protein (also known as γ‐secretase activating protein, or GSAP). Because GSAP interacts with the γ‐secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti‐Aβ therapy. GSAP derives from a C‐terminal fragment of a larger precursor protein of 98 kDa via a caspase 3‐mediated cleavage. However, the mechanism(s) involved in its degradation remain unknown. In this study, we show that GSAP has a short half‐life of approximately 5 h. Neuronal cells treated with proteasome inhibitors markedly prevented GSAP protein degradation, which was associated with a significant increment in Aβ levels and γ‐secretase cleavage products. In contrast, treatment with calpain blocker and lysosome inhibitors had no effect. In addition, we provide experimental evidence that GSAP is ubiquitinated. Taken together, our findings reveal that GSAP is degraded through the ubiquitin–proteasome system. Modulation of the GSAP degradation pathway may be implemented as a viable target for a safer anti‐Aβ therapeutic approach in Alzheimer's disease.

  相似文献   


20.
EphrinA/EphA‐dependent axon repulsion is crucial for synaptic targeting in developing neurons but downstream molecular mechanisms remain obscure. Here, it is shown that ephrinA5/EphA3 triggers proteolysis of the neural cell adhesion molecule (NCAM) by the metalloprotease a disintegrin and metalloprotease (ADAM)10 to promote growth cone collapse in neurons from mouse neocortex. EphrinA5 induced ADAM10 activity to promote ectodomain shedding of polysialic acid‐NCAM in cortical neuron cultures, releasing a ~ 250 kDa soluble fragment consisting of most of its extracellular region. NCAM shedding was dependent on ADAM10 and EphA3 kinase activity as shown in HEK293T cells transfected with dominant negative ADAM10 and kinase‐inactive EphA3 (K653R) mutants. Purified ADAM10 cleaved NCAM at a sequence within the E‐F loop of the second fibronectin type III domain (Leu671‐Lys672/Ser673‐Leu674) identified by mass spectrometry. Mutations of NCAM within the ADAM10 cleavage sequence prevented EphA3‐induced shedding of NCAM in HEK293T cells. EphrinA5‐induced growth cone collapse was dependent on ADAM10 activity, was inhibited in cortical cultures from NCAM null mice, and was rescued by WT but not ADAM10 cleavage site mutants of NCAM. Regulated proteolysis of NCAM through the ephrin5/EphA3/ADAM10 mechanism likely impacts synapse development, and may lead to excess NCAM shedding when disrupted, as implicated in neurodevelopmental disorders such as schizophrenia.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号