首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hypersensitive response (HR) is a form of cell death associated with plant resistance to pathogen infection. Harpinpss, an elicitor from the bacterium Pseudomonas syringae pv. syringae, induces a HR in non-host plants. Previously, we reported an amphipathic protein from sweet pepper interfering with harpinpss-mediated HR. In this report, we isolated and characterized a cDNA clone encoded that amphipathic protein from sweet pepper. This protein is designated as PFLP (plant ferredoxin-like protein) by virtue of its high homology with plant ferredoxin protein containing an N-terminal signal peptide responsible for chloroplast targeting and a putative 2Fe-2S domain responsible for redox activity. Recombinant PFLP obtained from Escherichia coliwas able to significantly increase active oxygen species (AOS) generation when mixed with harpinpss in tobacco suspension cells. It also showed enhanced HR when co-infiltrated with harpinpss in tobacco leaves. We used a transgenic tobacco suspension cells system that constitutively expresses the Pflpgene driven by the CaMV 35S promoter to study the function of PFLP in enhancing harpinpss-mediated hypersensitive cell death in vivo. In response to harpinpss, suspension cells derived from Pflptransgenic tobacco showed a significant increase both in the generation of AOS and in cell death as compared to the wild type. AOS inhibitors diphenylene iodonium chloride (DPI) and lanthanum chlorate (LaCl3) were used to study the involvement of AOS in harpinpss-induced cell death. Our results demonstrate enhanced generation of AOS is necessary to cause enhanced hypersensitive cell death in Pflp transgenic tobacco cells and it is plasma membrane-bound NADPH-oxidase-dependent. Sub-cellular localization studies showed that PFLP is present in the cytoplasm and chloroplast of Pflp transgenic tobacco cells, but only in the chloroplast, not in the cytoplasm, of wild-type tobacco cells. It is possible that PFLP can change the redox state of the cell upon harpinpss inoculation to increase AOS generation and hypersensitive cell death. Overall, this study will provide a new insight in the functional properties of ferredoxin in hypersensitive cell death.  相似文献   

2.
Boosted responsiveness of plant cells to stress at the onset of pathogen‐ or chemically induced resistance is called priming. The chemical β‐aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft‐rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene‐responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up‐regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA‐defective mutants demonstrated a wild‐type level of BABA‐induced resistance against Pcc. BABA primed the expression of the pattern‐triggered immunity (PTI)‐responsive genes FLG22‐INDUCED RECEPTOR‐LIKE KINASE 1 (FRK1), ARABIDOPSIS NON‐RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN‐INDUCED GENE (HIN1)‐LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe‐associated molecular patterns, such as flg22 or elf26. PTI‐mediated callose deposition was also potentiated in BABA‐treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA‐defective mutants SA induction deficient 2‐1 (sid2‐1) and phytoalexin deficient 4‐1 (pad4‐1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA‐induced resistance.  相似文献   

3.
Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpinPss-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H2O2 and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent.  相似文献   

4.
Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co‐infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N‐terminal and C‐terminal regions and found that, although both regions elicited HR in nonhost plants, only the N‐terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain.  相似文献   

5.
Archaea have inhabited the earth for a long period of time and are ubiquitously distributed in diverse environments. However, few studies have focused on the interactions of archaea with other organisms, including eukaryotes such as plants, since it is difficult to cultivate sufficient numbers of archaeal cells for analysis. In this study, we investigated the interaction between soil archaea and Arabidopsis thaliana. We demonstrate for the first time that soil archaea promote plant growth and trigger induced systemic resistance (ISR) against the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum SCC1 and biotrophic bacterium Pseudomonas syringae pv. tomato DC3000. Ammonia-oxidizing archaeon Nitrosocosmicus oleophilus MY3 cells clearly colonized the root surface of Arabidopsis plants, and increased resistance against both pathogenic species via the salicylic acid-independent signalling pathway. This mechanism of bacterial resistance resembles that underlying soil bacteria- and fungi-mediated ISR signalling. Additionally, volatile emissions from N. oleophilus MY3 were identified as major archaeal determinants that elicit ISR. Our results lay a foundation for archaea–plant interactions as a new field of research.  相似文献   

6.
Quorum sensing is a regulatory mechanism of gene expression in bacteria which regulated many physiological processes such as production of virulence factors in Pectobacterium carotovorum. In this research, the plant expression vector, pBI121, harbouring the anti-quorum sensing gene, aiiA, was transformed into Potato (Solanum tuberosum cv. Agria) explants by Agrobacterium mediated transformation procedure and putative transformants containing pBI121/aiiA were obtained. The results of bioassay test revealed that the expression of aiiA gene in potato plant induces the resistance to the early stage of bacterium pathogenesis. The soft rot symptoms such as wilting, yellowing and tissue maceration were not observed until 48?hr after inoculation of transgenic potatoes with P. carotovorum. Although in non-transgenic plants, the disease symptoms were appeared after 24?hr of plants infection. Hence, this study proves that the heterologous expression of aiiA gene enhances the resistance against potato soft rot disease.  相似文献   

7.
We investigated the relative importance of specific Arabidopsis thaliana genes in conferring resistance to bacterial versus fungal pathogens. We first developed a pathosystem involving the infection of Arabidopsis accession Columbia with a virulent isolate of the obligate biotrophic fungal pathogen Erysiphe orontii. E. orontii elicited the accumulation of mRNAs corresponding to the defense-related genes PR1, BGL2 (PR2), PR5 and GST1 , but did not elicit production of the phytoalexin camalexin or the accumulation of defensin ( PDF1.2 ) or thionin ( THI2.1 ) mRNAs. We tested a set of 15 previously isolated Arabidopsis phytoalexin deficient (pad), non-expresser of PR (npr) and enhanced disease susceptibility (eds) mutants that are more susceptible to Pseudomonas syringae for their susceptibility to E. orontii. Four of these mutants ( pad4–1, npr1–1, eds5–1 and a double npr1–1 eds5–1 mutant) as well as Arabidopsis lines carrying a nahG transgene exhibited enhanced susceptibility to E. orontii and reduced levels of PR gene expression . Comparison of the PR gene induction patterns in response to E. orontii in the various mutants and in the nahG transgenics suggests the existence of NPR1 -independent salicylate-dependent and NPR1 -independent salicylate-independent defense gene activation pathways. Eleven other eds and pad mutants did not show measurable enhanced susceptibility to E. orontii , suggesting that these mutants are defective in factors that are not important for the limitation of E. orontii growth.  相似文献   

8.
The plant hypersensitive response (HR) to avirulent bacterial pathogens results from programmed cell death of plant cells in the infected region. Ion leakage and changes in signaling components associated with HR progression were measured. These studies compared Arabidopsis mutants affecting feedback loops with wild-type plants, with timepoints taken hourly. In response to Pseudomonas syringae pv. tomato DC3000 x avrB, npr1-2 mutant plants showed increased ion leakage relative to wild-type plants. Hydrogen peroxide accumulation was similar to that in wild type, but salicylic acid accumulation was reduced at some timepoints. With DC3000 x avrRpt2, similar trends were seen. In response to DC3000 x avrB, ndr1-1 mutant plants showed more ion leakage than wild-type or npr1-2 plants. Hydrogen peroxide accumulation was delayed by approximately 1 h and reached half the level seen with wild-type plants. Salicylic acid accumulation was similar to npr1-2 mutant plants. With DC3000 x avrRpt2, ndr1-1 mutant plants showed no ion leakage, no hydrogen peroxide accumulation, and minimal salicylic acid accumulation. Results with a ndr1-1 and npr1-2 double mutant were similar to ndr1-1. A model consistent with these data is presented, in which one positive and two negative regulatory circuits control HR progression. Understanding this circuitry will facilitate HR manipulation for enhanced disease resistance.  相似文献   

9.
10.
An C  Mou Z 《PloS one》2012,7(1):e31130
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.  相似文献   

11.
To identify bacteria causing soft rot and blackleg in potato in Finland, pectinolytic enterobacteria were isolated from diseased potato stems and tubers. In addition to isolates identified as Pectobacterium atrosepticum and Dickeya sp., many of the isolated strains were identified as Pectobacterium carotovorum subsp. carotovorum. Phylogenetic analysis and biochemical tests indicated that one of the isolates from potato stems resembled Pectobacterium wasabiae. Furthermore, two blackleg‐causing P. carotovorum strains recently isolated in Europe clustered with P. wasabiae, suggesting that at least some of these isolates were originally misidentified. All the other Finnish P. carotovorum isolates resembled the subsp. carotovorum type strain in biochemical tests but could be clustered into two distinct groups in the phylogenetic analysis. One of the groups mainly contained strains isolated from diseased tubers, whereas the other mainly included isolates from potato stems. In contrast to the tuber isolates, the stem isolates lacked genes in Type III secretion genes, were not able to elicit a hypersensitive response in tobacco leaves and produced only small amounts of autoinducers in the stationary phase in vitro. P. wasabiae isolate was able to cause similar amount of blackleg‐like symptoms as P. atrosepticum in a field experiment with vacuum‐infiltrated tubers, whereas both P. atrosepticum and P. carotovorum isolates reduced emergence and delayed growth more than P. wasabiae. Our findings confirm the presence of P. wasabiae in Finland and show that the Finnish P. carotovorum subsp. carotovorum isolates can be divided into two groups with specific characteristics and possibly also different ecologies.  相似文献   

12.
Thirty isolates of Pectobacterium carotovorum from soft rot‐affected sugar beet plants in the Fars province of Iran were characterized phenotypically and by analysis of whole‐cell protein electrophoresis patterns. The isolates were found to be heterogeneous based on the results of physiological and biochemical tests and protein profiles. The results of numerical analysis of phenotypic characteristics and protein patterns showed that only 27% of the collected isolates (phenon 4) could be identified as P. betavasculorum when compared with reference strains. Strains of the first, second, third and fifth phenon shared similar characters with those of P. carotovorum subsp. carotovorum, P. betavasculorum and P. carotovorum subsp. odoriferum, but were distinct from these subspecies. Inoculation of phenon 4 isolates into wounded sugar beet petioles led to black streaking, root rot and vascular necrosis. Other isolates were incapable of causing systemic symptoms in inoculated plants.  相似文献   

13.
The aim of this study was characterized Pectobacterium carotovorum subsp. carotovorum (Pcc) the causal pathogen of watermelon soft rot disease in Iran. Of fifty bacterial isolates with white grey and convex colonies on nutrient agar obtained from symptomatic watermelon, ten isolates were selected for further tests. Pathogenicity tests results showed that all test isolates developed typical water‐soak symptoms after 2 days and signs of soft rot began 4 days after inoculation on watermelon fruits. Based on the phenotypic properties, the isolates were identified as Pectobacterium carotovorum subsp. carotovorum. The 16S rDNA sequences of isolates were 99% similar to the corresponding 16S rDNA sequence of the reference Pcc isolate. BOX and ERIC‐PCR analysis indicated that genetic diversity was present among the isolated Pcc isolates did not relate to the geographic location isolated from. To the best of our knowledge, this is the first study of biochemical and genotypic characterization of Pcc isolates the causal agents of soft rot disease on watermelon, in Iran.  相似文献   

14.
Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defence in plants. However, their function in plant immunity is not fully understood. In this study, we show that the expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv. tomato (Pst) DC3000 infection, and that knockout of Fd2 (Fd2‐KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. On Pst DC3000 infection, the Fd2‐KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid‐related immune responses. Fd2‐KO also shows defects in the accumulation of reactive oxygen species induced by pathogen‐associated molecular pattern‐triggered immunity. However, Fd2‐KO shows enhanced R‐protein‐mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector‐triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin‐binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 plays an important role in plant immunity.  相似文献   

15.
16.
17.
The plant growth‐promoting fungi (PGPF) have long been known to improve plant growth and suppress plant diseases. The PGPF Penicillium viridicatum GP15‐1 elicited plant growth and induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. Examination of local and systemic genes indicated that GP15‐1 did not modulate the expression of any of the tested defence‐related marker genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene signalling pathways. Subsequent challenge of GP15‐1‐colonized plants with Pst bacterium primed Arabidopsis plants for enhanced activation of the JA‐inducible Atvsp (vegetative storage protein) gene at a later stage of infection. To assess the contribution of different signalling pathways in GP15‐1‐elicited plant growth and ISR, Arabidopsis genotypes implicated in SA signalling expressing the nahG transgene (NahG) or carrying disruption in NPR1 (npr1), JA signalling (jar1) and ethylene signalling (ein2) were tested. The GP15‐1‐induced plant growth and ISR were fully compromised in an ein2 mutation. Root colonization assay revealed that the inability of the ein2 mutant to express GP15‐1‐induced plant growth and ISR was not associated with reduced root colonization by GP15‐1. In conclusion, our results demonstrate the ethylene signalling pathway is involved in plant growth promotion and ISR elicitation by the PGPF P. viridicatum GP15‐1 in Arabidopsis. These results provide evidence that ethylene signalling has a substantial role in plant growth and disease resistance.  相似文献   

18.
19.
20.
Soft rot disease can be found worldwide on fleshy storage tissues of fruits, vegetables and ornamentals. The soft rot Pectobacterium carotovorum subsp. carotovorum (Pcc) is an important pathogen of Kalanchoe spp. and other ornamental plants. The disease occurs on crops in the field, greenhouses and during transit, resulting great economic damages. The economic importance of crop loss by soft rot bacteria varies by severity of the disease and value of the crop. A destructive disease on Kalanchoe gastonis-bonnierii was observed in commercial ornamental plant greenhouses in Cameron highland and Melaka, Malaysia in 2011. Samples suspected to be infested with Pectobacterium spp. were brought to the laboratory. In pathogenicity test, a suspension of 106?CFU/ml of strains was able to cause soft rot on leaves and stems. A 434?bp banding pattern on 1% agarose gel was produced in polymerase chain reaction (PCR) amplification of pectate lyase encoding gene (Pel gene). PCR amplification of the intergenic transcribed spacer (ITS) (16S–23S rRNA) ITS region with G1 and L1 primers produced two main bands at about 540 and 570?bp. The ITS-PCR products were digested with RsaI restriction enzyme. For discrimination of the P. carotovorum subsp. carotovorum (Pcc) from P. carotovorum subsp. odoriferum (Pco), all isolates subjected to α-methyl glucoside test. All isolates were identified as Pcc based on phenotypic and molecular methods. This is the first report of soft rot disease caused by P. carotovorum subsp. carotovorum on K. gastonis-bonnierii, in Malaysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号