首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The existence of monoecious and dioecious populations within plant species is rare. This limits opportunities to investigate the ecological mechanisms responsible for the evolution and maintenance of these contrasting sexual systems. In Sagittaria latifolia, an aquatic flowering plant, monoecious and dioecious populations exist in close geographic proximity but occupy distinct wetland habitats differing in the relative importance of disturbance and competition, respectively. Life-history theory predicts contrasting evolutionary responses to these environmental conditions. We propose that the maintenance of monoecy and dioecy in S. latifolia is governed by ecological selection of divergent life-history strategies in contrasting habitats. Here we evaluate this hypothesis by comparing components of growth and reproduction between monoecious and dioecious populations under four conditions: natural populations, a uniform glasshouse environment, a common garden in which monoecious and dioecious populations and their F1 progeny were compared, and a transplant experiment using shaded and unshaded plots in a freshwater marsh. Plants from dioecious populations were larger in size and produced heavier corms in comparison with monoecious populations. Monoecious populations flowered earlier and produced more flowers, clonal ramets, and corms than dioecious populations. The life-history differences between the sexual systems were shown to have a quantitative genetic basis, with F1 progeny generally exhibiting intermediate trait values. Survival was highest for each sexual system in field plots that most closely resembled the habitats in which monoecious (unshaded) and dioecious (shaded) populations grow. These results demonstrate that monoecious and dioecious populations exhibit contrasting patterns of investment in traits involved with growth and reproduction. Selection for divergent life histories between monoecious and dioecious populations of S. latifolia appears to be the principal mechanism maintaining the integrity of the two sexual systems in areas of geographic overlap.  相似文献   

2.
Investigation of gender specialization in plants has led to several theories on the evolution of sexual dimorphism: reproductive compensation, based on enhanced reproductive efficiency with gender specialization (flowers should be larger on dioecious plants); Bateman's Principle, based on sex-specific selection (display for pollinator attraction in males and seed set in females); and intersexual floral mimicry, based on mimicry of a reward-providing gender by a non-reward providing gender (reduced dimorphism in dioecious plants due to increased spatial separation of male and female flowers). These theories were evaluated in Ecballium elaterium, which contains two subspecies, elaterium (monoecious) and dioicum (dioecious). Our results show that flowers of the dioecious subspecies are larger and allocate more to reproductive organs than do flowers of the monoecious subspecies. Both subspecies are sexually dimorphic (male flowers larger than female flowers). Variance in flower size among populations is greater in the dioecious subspecies. Finally, there is sufficient genetic variation to enable ongoing response to selection; genetic correlation constraints on independent response of female and male flowers may be stronger in the monoecious subspecies. Our findings provide support for aspects of all three theories, suggesting that the evolution of floral dimorphism is based on a complex interplay of factors.  相似文献   

3.
It has been proposed that relative allocation to female function increases with plant size in animalpollinated species.Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size-dependent sex allocation (SDS),throwing doubt on the generalization of SDS.Plant size,phenotypic gender,and flower production were measured in experimental populations of an aquatic,insect-pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities.The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors.In the high-density population,48% of ramets were male without female flowers,but in the low-density population all ramets were monoecious.We observed allometric growth in reproductive allocation with ramet size,as evident in biomass of reproductive structures and number of flowers.However,within both populations female and male flower production were isometric with ramet size,in contrast to an allometric growth in femaleness as predicted by SDS.Phenotypic gender was not related to ramet size in either population.The results indicated that large plants may increase both female and male function even in animal-pollinated plants,pointing towards further studies to test the hypothesis of size-dependent sex allocation using different allocation currencies.  相似文献   

4.
Available resources could influence the trade-offs among different reproductive components in plants. Here, we created three nutrient levels to test the nutrient effects on trade-offs among sexual reproduction, clonal propagation and vegetative growth in a monoecious clonal herb Sagittaria pygmaea. The results of this study showed that the plant exhibited different trade-off patterns among different nutrient levels. When the nutrient level was low, there were weak trade-offs between sexual reproduction and vegetative growth and between clonal propagation and vegetative growth; when the nutrient level was moderate, we found a strong trade-off between sexual reproduction and clonal propagation; but when the nutrient level was high, we found no trade-offs among these three different reproductive components. These results indicated that the plant could adjust its trade-off patterns to fit the nutrient variation and suggested that trade-offs are unlikely to constrain the evolution of reproductive strategy in this species.  相似文献   

5.
Abstract It has been proposed that relative allocation to female function increases with plant size in animal‐pollinated species. Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size‐dependent sex allocation (SDS), throwing doubt on the generalization of SDS. Plant size, phenotypic gender, and flower production were measured in experimental populations of an aquatic, insect‐pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities. The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors. In the high‐density population, 48% of ramets were male without female flowers, but in the low‐density population all ramets were monoecious. We observed allometric growth in reproductive allocation with ramet size, as evident in biomass of reproductive structures and number of flowers. However, within both populations female and male flower production were isometric with ramet size, in contrast to an allometric growth in femaleness as predicted by SDS. Phenotypic gender was not related to ramet size in either population. The results indicated that large plants may increase both female and male function even in animal‐pollinated plants, pointing towards further studies to test the hypothesis of size‐dependent sex allocation using different allocation currencies.  相似文献   

6.
We examined components of male and female reproductive success in protogynous and protandrous sexual morphs of the heterodichogamous and largely monoecious chenopod shrub Grayia brandegei. Percentage femaleness of flowering stalks ranged from 0 to 37.6% female ( = 15.5%) for protandrous plants and from 14 to 100% female ( = 55.8%) for protogynous plants. Functional gender estimates based on ovule production at two locations ranged from 23.0 to 31.8% female for the protandrous morph, and from 65.3 to 77.0% female for the protogynous morph. Realized gender estimates based on total seed production ranged in value from 3.6 to 16.8% female for the protandrous morph and from 76.5 to 96.4% for the protogynous morph, depending on location and year. Differences in reproductive success of the two morphs were largely due to a reduction in the female function of protandrous plants. Protogynous plants produced more female flowers per stalk and had a higher percentage of seed-filled fruits than did protandrous plants. Differences between sexual morphs were more pronounced in dry areas or years in which overall seed production was minimal. Differential seed production between morphs likely reflects temporal patchiness in environmental conditions, particularly in water availability. The significance of these findings in support of heterodichogamy as an evolutionary pathway to dioecy is discussed.  相似文献   

7.
That trade-offs result from the allocation of limited resources is a central concept of life history evolution. We quantified trade-offs between sexual and clonal reproduction in the aquatic plant, Butomus umbellatus, by experimentally manipulating sexual investment in two distinct nutrient environments. Increasing seed production caused a significant but nonlinear trade-off. Pollinating half of all flowers strongly reduced clonal bulbil production, but pollinating the remaining flowers did not cause any further trade-off. Trade-offs were not stronger under low nutrient conditions that clearly limited plant growth. Experimentally induced trade-offs were not reflected in negative phenotypic correlations between sexual and clonal allocation among plants within eight populations grown in a uniform greenhouse environment. Diminishing effects of increased sexual allocation plus a lack of accord between experimental manipulations and phenotypic correlations suggest that trade-offs between sexual and clonal reproduction are unlikely to constrain the evolution of reproductive strategy in this species.  相似文献   

8.
植物有性繁殖与资源分配的关系研究对于揭示植物生活史特征及繁育系统进化具有重要意义。新疆郁金香(Tulipa sinkiangensis)是新疆天山北坡荒漠带特有的一种多年生早春短命植物。在自然生境中,该物种仅以有性繁殖产生后代,每株能产生1-8朵花,且不同植株上的花数及果实数以及花序不同位置上的花与果实大小明显不同。本文通过对新疆郁金香有性繁殖与营养生长及植株大小的关系以及花序中不同位置花及果实间的资源分配研究,旨在揭示营养生长、个体大小及开花次序对其繁殖分配的影响。结果表明:在开花和果实成熟阶段,新疆郁金香植株分配给营养器官(鳞茎和地上营养器官)与繁殖器官的资源间均存在极显著的负相关关系(P<0.01),说明其植株的营养生长与生殖生长间存在权衡关系。多花是新疆郁金香的一个稳定性状,其植株上花数目、花生物量、果实生物量和种子数量与植株生物量间均呈极显著的正相关关系(P<0.01),说明新疆郁金香植株的繁殖分配存在大小依赖性。在具2-5朵花的新疆郁金香植株中,花序内各花的生物量、花粉数和胚珠数、结实率、果实生物量、结籽数、结籽率及种子百粒重按其开花顺序依次递减,说明花序内各花和果实的资源分配符合资源竞争假说。植株通过减少晚发育的花或果实获得的资源来保障早发育的花或果实获得较多的资源,从而达到繁殖成功。  相似文献   

9.
In protogynous plants, female flowers of early blooming plants are at a reproductive disadvantage because they cannot set fruit due to the lack of available pollen. To study this phenomenon, gender expression of the monoecious herb Sagittaria trifolia was investigated over the entire flowering season in two field and two cultivated populations in Hubei and Hunan Provinces, China. In racemes of S. trifolia, flowers open sequentially from bottom to top, with female flowers opening first followed by male flowers. This creates a temporal separation of sexes in the species. Under field conditions small plants are often male, with production of both male and female flowers increasing with plant size. Femaleness increased among sequential inflorescences since female flower production increased whereas male flower production did not. Seed production was greater in large inflorescences because they contain more female flowers, and the number of ovules increased in female flowers at basal positions within the raceme. A consistent pattern of high seed set was observed in flowers from both field and cultivated populations. About 1 % of unfertilized ovules resulted from no pollination and 2 % of the seeds produced were only partly developed due to resource limitation. In the first inflorescence of the six experimental populations, 6.7-40.0 % of individuals produced only male flowers, and female flowers of 1.9-6.5 % individuals were aborted. The occurrence of male flowers in early blooming inflorescences could be an adaptive strategy to conserve resources and enhance pollination of female flowers in protogynous S. trifolia.  相似文献   

10.
Aims To explore whether the trade-off between seed and vegetative reproductive modes is flexible in environments with different amounts of available resources to maintain optimal behaviors.Methods A transition matrix model was established to determine the optimal trade-off between seed and vegetative reproduction in resources–variable habitats.Important findings The model predicts that plants allocate more resources to seed reproduction when available resources are scarce. With increasing resources, more vegetative propagules are produced. However, if resources keep increasing to a harmful level, plants would switch to seeds again.  相似文献   

11.
Green dragon (Arisaema dracontium; Araceae) is a perennial woodland herb capable of switching gender from year to year. Small flowering plants produce only male flowers but when larger they produce male and female flowers simultaneously. Distinct male and monoecious phenotypes (referred to hereafter as plants) share a single underlying cosexual genotype. Four populations in southern Louisiana were sampled to determine frequencies and size distributions of male and monoecious plants, and to determine the relationship of plant size with male and female flower production in monoecious plants. Male plants were significantly smaller than monoecious plants and made up 34%–78% of flowering plants within populations. Flower number (average = 120) was weakly positively correlated with size. Monoecious plants produced an average of 169 flowers (90 female) and had 100% fruit set, with individual berries containing an average of 2.5 ovules and 1.3 filled seeds. Male flower number was negatively correlated, and female flower number positively correlated, with basal stem diameter. Extrapolation of regression slopes suggested that green dragon should become completely female at a size 20% larger than the largest plant observed in this study. A simple model of inflorescence development is presented to illustrate how the reproductive system of green dragon is related to that of jack-in-the-pulpit (A. tnphyllum), which exhibits a more distinct switch between male and female phenotypes.  相似文献   

12.
Populations of Allium vineale commonly include individuals with very different allocation patterns to three modes of reproduction: sexual flowers, aerially produced asexual bulbils, and belowground asexual offsets. If selection is currently acting to maintain these different allocation patterns there must be a genetic basis for variation in allocation to these three reproductive modes. In addition, negative genetic correlations between reproductive traits would imply evolutionary trade-offs among reproductive strategies. We evaluated the heritability of these allocation patterns by growing 16 clones from a single population in the greenhouse at two levels of fertilization. Bulb mass and the mass and number of bulbils, offsets, and flowers were used as response variables, in addition to the proportion allocated to each reproductive mode. We found evidence of substantial heritable variation in allocation to sexual reproduction and in allocation within the two modes of asexual reproduction, indicating high sensitivity of these allocation patterns to natural selection. We also found evidence of strong negative genetic correlations between bulbil and flower traits, as well as between bulbil and offset traits, with one group of genotypes allocating greater resources to aerial asexual bulbils and the second group allocating more resources to belowground asexual offsets and aerial flowers. Phenotypic plasticity in allocation to above- vs. belowground asexual reproduction and sexual vs. asexual aerial reproduction was limited, indicating that plants are unlikely to change reproductive mode in response to nutrient availability. Together, then, we have demonstrated strong heritability for, and trade-offs in, the reproductive allocation patterns within this plant population.  相似文献   

13.
王沫竹  董必成  李红丽  于飞海 《生态学报》2016,36(24):8091-8101
自然界中光照和养分因子常存在时空变化,对植物造成选择压力。克隆植物可通过克隆生长和生物量分配的可塑性来适应环境变化。尽管一些研究关注了克隆植物对光照和养分因子的生长响应,但尚未深入全面了解克隆植物对光照和养分资源投资的分配策略。以根茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis)为研究对象,在温室实验中,将其独立分株种植于由2种光照强度(光照和遮阴)和4种养分水平(对照、低养分、中养分和高养分)交叉组成的8种处理组合中,研究了光照和养分对其生长繁殖及资源贮存策略的影响。结果表明,扁秆荆三棱的生长、无性繁殖及资源贮存性状均受到光照强度的显著影响,在遮阴条件下各生长繁殖性状指标被抑制。且构件的数目、长度等特征对养分差异的可塑性响应先于其生物量积累特征。在光照条件下,高养分处理的总生物量、叶片数、总根茎分株数、长根茎分株数、总根茎长、芽长度、芽数量等指标大于其他养分处理,而在遮阴条件下,其在不同养分处理间无显著差异,表明光照条件可影响养分对扁秆荆三棱可塑性的作用,且高营养水平不能补偿由于光照不足而导致的生长能力下降。光照强度显著影响了总根茎、总球茎及大、中、小球茎的生物量分配,遮阴条件下,总生物量减少了对地下部分根茎和球茎的分配,并将有限的生物量优先分配给小球茎。总根茎的生物量分配未对养分发生可塑性反应,而随着养分增加,总球茎分配下降,说明在养分受限的环境中球茎的贮存功能可缓冲资源缺乏对植物生长的影响。在相同条件下,根茎生物量对长根茎的分配显著大于短根茎,以保持较高的繁殖能力;而总球茎对有分株球茎的生物量分配小于无分株球茎,表明扁秆荆三棱总球茎对贮存功能的分配优先于繁殖功能。研究为进一步理解根茎型克隆植物对光强及基质养分环境变化的生态适应提供了依据。  相似文献   

14.
In dioecious species, females typically allocate more resources to reproduction and incur greater costs of reproduction than males. In gynodioecious species, sex-based differences in reproductive allocation (RA) and costs have been less studied. Such knowledge, however, is relevant to address how females establish and increase in frequency in populations. We examine RA and reproductive costs by comparing fruit set, the proportion of biomass allocated to reproduction, and the responses of fruit set and vegetative growth to shoot defoliation in females and hermaphrodites in gynodioecious Leucopogon melaleucoides. Relative to hermaphrodites, females exhibited a two-fold fruit set advantage. Female fruit set increased proportionately with flower number, but hermaphrodite fruit set was reduced on plants with more flowers. Sex-based differences in allocation to other traits were small. Thus, female RA at flowering was similar to hermaphrodite RA, but was 1.4-fold greater at fruiting. Relative to controls, defoliation reduced fruit set and the percentage of shoots that produced new vegetative growth similarly in both sexes. However, females had a lower proportion of shoots with new growth overall. Further, defoliation on females reduced the dry mass of new growth by 44% compared with controls, whereas hermaphrodites were not affected. These results indicate a trade-off between reproduction and vegetative growth, and greater female costs of reproduction, particularly under resource-limiting conditions. In the absence of compensatory traits to offset higher female reproductive costs, such trade-offs have the potential to retard the spread of females in gynodioecious populations.  相似文献   

15.
Trade-offs between acquisition capacities for aboveground and belowground resources were investigated by studying the phenotypic plasticity of leaf and root traits in response to different irradiance levels at low nutrient supply. Two congeneric grasses with contrasting light requirements, Dactylis glomerata and D. polygama, were used. The aim was to analyze phenotypic covariation in components of leaf area and root length in response to above- and belowground resource limitation and the consequences of this variation for resource acquisition and plant growth. At intermediate shading (30 and 20% of full sunlight) the plants were able to maintain their total root length, despite a strongly increased total leaf area and a reduced biomass allocation to roots. This was associated with an unaltered or slightly increased nutrient uptake and growth. At 5.5% relative irradiance, growth was severely reduced, especially in the shade-tolerant D. polygama. The results show that constraints on acquisition capacities for aboveground and belowground resources, caused by biomass allocation, may be alleviated by plasticity in other traits such as tissue-mass density and thickness of roots and leaves. The results also suggest different adaptive constraints for phenotypic plasticity and for genetically determined interspecific variation. Phenotypic plasticity tends to maximize resource acquisition and growth rate in the short term, whereas the higher tissue-mass density and the longer leaf life-span of shade-tolerant species indicate reduced loss rates as a more advantageous species-specific adaptation to shade in the long term.  相似文献   

16.
The reproductive ecology of wind-pollinated gynomonoecious species, in which the individual plant produces both female (pistillate) and perfect flowers, has rarely been studied. We examined the floral phenology and reproductive traits in Rhoiptelea chiliantha , described as gynomonoecy, to understand the adaptive significance of this sexual system. This species is a rare tree native to south-western China and northern Vietnam. The flowers are characterized by an anemophilous pollination syndrome, but no insects were observed foraging on them. Perfect flowers have larger tepals but smaller stigmas than female flowers, indicating flower size dimorphism. Floral ratios of female to perfect flowers are stable in different individuals and populations. On individual plants, perfect flowers open first, followed by female flowers, with a 1-week interval. Perfect flowers are protogynous with a 3.7-day interval (neuter phase) between the female phase (1.5 days) and expanded male phase (8.2 days). Both female and perfect flowers exhibit pronounced synchrony in flowering at the levels of inflorescences and individuals. However, flowers on different individuals show asynchronicity in timing of initial blooming. Tracking the process from pollination to fruit maturation, we found that female flowers contributed almost exclusively to seed production, but perfect flowers were sterile (functionally males). Therefore, this plant is functionally monoecious. This finding resolved a puzzle on the occurrence of female flowers in this plant, because previous reports described female flowers as being sterile. As the sex phases were completely separate between individuals, the pattern of floral phenology may ensure that outcrossing strongly predominates.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 145–151.  相似文献   

17.
Most plants can reproduce both sexually and asexually (or vegetatively),and the balance between the two reproductive modes may vary widely between and within species.Extensive clonal growth may affect the evolution of life history traits in many ways.First,in some clonal species,sexual reproduction and sex ratio vary largely among populations.Variation in sexual reproduction may strongly affect plant's adaptation to local environments and the evolution of the geographic range.Second,clonal growth can increase floral display,and thus pollinator attraction,while it may impose serious constraints and evolutionary challenges on plants through geitonogamy that may strongly influence pollen dispersal.Geitonogamous pollination can bring a cost to plant fitness through both female and male functions.Some co-evolutionary interactions,therefore,may exist between the spatial structure and the mating behavior of clonal plants.Finally,a trade-off may exist between sexual reproduction and clonal growth.Resource allocation to the two reproductive modes may depend on environmental conditions,competitive dominance,life span,and genetic factors.If different reproductive modes represent adaptive strategies for plants in different environments,we expect that most of the resources should be allocated to sexual reproduction in habitats with fluctuating environmental conditions and strong competition,while clonal growth should be dominant in stable habitats.Yet we know little about the consequence of natural selection on the two reproductive modes and factors which control the balance of the two reproductive modes.Future studies should investigate the reproductive strategies of clonal plants simultaneously from both sexual and asexual perspectives.  相似文献   

18.
? Many plants combine sexual reproduction with vegetative propagation, but how trade-offs between these reproductive modes affect fitness is poorly understood. Although such trade-offs have been demonstrated at the level of individual shoots (ramets), there is little evidence that they scale up to affect genet fitness. For hermaphrodites, reproductive investment is further divided between female and male sexual functions. Female function should generally incur greater carbon costs than male function, which might involve greater nitrogen (N) costs. ? Using a common garden experiment with diclinous, clonal Sagittaria latifolia we manipulated investment in reproduction through female and male sex functions of 412 plants from monoecious and dioecious populations. ? We detected a 1?:?1 trade-off between biomass investment in female function and clonal reproduction. For male function, there was no apparent trade-off between clonal and sexual reproduction in terms of biomass investment. Instead, male function incurred a substantially higher N cost. ? Our results indicate that: trade-offs between investment in clonal propagation and sexual reproduction occur at the genet level in S.?latifolia; and sexual reproduction interferes with clonal expansion, with investment in female function limiting the quantity of clonal propagules produced, and investment in male function limiting the nutrient content of clonal propagules.  相似文献   

19.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

20.
Other than studies on sex-labile Arisaema species, studies of gender patterns in Araceae are scarce. The modification of phenotypic and functional gender was investigated in three populations of the monoecious Arum italicum Miller. The probability of reproduction and the number of inflorescences produced increased with plant size, and flower number (total, male, staminodes, female, pistillodes) increased with both plant and inflorescence sizes. However, plant and inflorescence sizes were poor predictors of floral sex ratio (female to male flower ratio). In contrast, change in floral sex ratio towards increasing femaleness was found among inflorescences sequentially produced by a plant. This change could not be explained by either a decrease in inflorescence size or a change in the mating environment. Differences in functional gender did not appear to be related to plant size or stage in the flowering period. Instead, different patterns of functional gender were found between plants with different number of inflorescences. Multi-inflorescence plants showed a functional gender around 0.5, while plants with one inflorescence showed a more extreme functional gender (either male, female, or functionally sterile). Sex of flowers in this species did not seem to exhibit a phenotypic trade-off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号