首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual reproduction may be cryptic or facultative in fungi and therefore difficult to detect. Magnaporthe oryzae, which causes blast, the most damaging fungal disease of rice, is thought to originate from southeast Asia. It reproduces asexually in all rice‐growing regions. Sexual reproduction has been suspected in limited areas of southeast Asia, but has never been demonstrated in contemporary populations. We characterized several M. oryzae populations worldwide both biologically and genetically, to identify candidate populations for sexual reproduction. The sexual cycle of M. oryzae requires two strains of opposite mating types, at least one of which is female‐fertile, to come into contact. In one Chinese population, the two mating types were found to be present at similar frequencies and almost all strains were female‐fertile. Compatible strains from this population completed the sexual cycle in vitro and produced viable progenies. Genotypic richness and linkage disequilibrium data also supported the existence of sexual reproduction in this population. We resampled this population the following year, and the data obtained confirmed the presence of all the biological and genetic characteristics of sexual reproduction. In particular, a considerable genetic reshuffling of alleles was observed between the 2 years. Computer simulations confirmed that the observed genetic characteristics were unlikely to have arisen in the absence of recombination. We therefore concluded that a contemporary population of M. oryzae, pathogenic on rice, reproduces sexually in natura in southeast Asia. Our findings provide evidence for the loss of sexual reproduction by a fungal plant pathogen outside its centre of origin.  相似文献   

2.
The sexual stage of pathogens governs recombination patterns and often also provides means of surviving the off‐season. Despite its importance for evolutionary potential and between‐season epidemiology, sexual systems have not been carefully investigated for many important pathogens, and what generates variation in successful sexual reproduction of pathogens remains unexplored. We surveyed the sexually produced resting structures (chasmothecia) across 86 natural populations of fungal pathogen Podosphaera plantaginis (Ascomycota) naturally infecting Plantago lanceolata in the Åland archipelago, southwestern Finland. For this pathosystem, these resting structures are a key life‐history stage, as more than half of the local pathogen populations go extinct every winter. We uncovered substantial variation in the level of chasmothecia produced among populations, ranging from complete absence to presence on all infected leaves. We found that chasmothecia developed within clonal isolates (single‐strain cultures). Additionally, these clonal isolates all contained both MAT1‐1‐1 and MAT1‐2‐1 genes that characterize mating types in Ascomycetes. Hence, contrary to expectations, we conclude that this species is capable of haploid selfing. In controlled inoculations, we discovered that pathogen genotypes varied in their tendency to produce chasmothecia. Production of chasmothecia was also affected by ambient temperature (E) and by the interaction between temperature and pathogen genotype (G × E). These G, E and G × E effects found both at a European scale and within the Åland archipelago may partly explain the high variability observed among populations in chasmothecia levels. Consequently, they may be key drivers of the evolutionary potential and epidemiology of this highly dynamic pathosystem.  相似文献   

3.
Wheat yellow rust (Puccinia striiformis f.sp. tritici) (PST) has been described as a strongly clonal species in both European and Australian populations, with very limited molecular diversity but rapidly evolving virulences. Contrastingly, marked genetic diversity has been reported in Chinese PST populations. To test whether such variability could originate from oversummering areas, we assessed the diversity of virulence and molecular markers (AFLP and SSR) using 412 PST isolates from the highlands of Tianshui county in Gansu province. Very marked phenotypic and genotypic diversity (38% and 89%, respectively) was found. No genetic structure dependent on the sites sampled (Fst = 0.004) or altitude distribution (Fst = 0.0098) was detected, indicating important gene flow at the county scale. This study also revealed genetic recombination between molecular markers and thus strongly suggests the existence of a sexual or parasexual cycle in PST in Tianshui county. The observations of higher rates of sexual spore production in genotypes originating from Tianshui are the very first elements suggestive of the existence of a sexual cycle in this species.  相似文献   

4.
A total of 90 isolates of Mycosphaerella graminicola, the cause of septoria tritici leaf blotch of wheat, were tested for DNA polymorphism using 15 decamer random primers. There was a high level of genetic variability among isolates. In 131 random amplified polymorphic DNA (RAPD) fragments, which were produced, 96% were polymorphic. Based on multilocus analysis, 40 different molecular phenotypes were detected. These molecular phenotypes were randomly distributed among sampling sites, suggesting that no clonal structure existed in the population. Cluster analysis showed that the maximum similarity value among isolates was approximately 81% and no identical isolates were detected, indicating that every isolate was a unique genotype. The high degree of DNA polymorphism, the large number of different molecular phenotypes, their random distribution and the results of the cluster analysis all suggested that sexual reproduction has a major role in the genetic structure of M. graminicola in western Canada. The presence of sexual reproduction provides the opportunity for development of new virulent genotypes in the population and suggests that the pathogen may adapt rapidly to any race‐specific sources of resistance. Therefore, when breeding for resistance to M. graminicola, emphasis should be placed on use of non‐race‐specific resistance.  相似文献   

5.
Phytophthora capsici is an important oomycete pathogen threatening the vegetable production in China, but very little is known about its population structure. The objective of the present study was to evaluate the genetic diversity of 49 P. capsici isolates obtained from 2007 to 2014 at nine provincial locations in China. Isolates were assessed for mating type, metalaxyl resistance and simple sequence repeat (SSR) genotype. Mating‐type analyses of the isolates showed that both mating types were present in all of the sampled production regions, and the mating‐type frequency in the total Chinese population did not deviate significantly from a 1:1 ratio. Responses of isolates to the fungicide metalaxyl indicated the presence of intermediate resistance to metalaxyl among the field population. A universal fluorescent labelling method was adapted in this study to improve the efficiency of SSR genotyping. Microsatellite genotyping of the isolates using seven SSR markers revealed 44 unique multilocus genotypes. Genetic analyses indicated the existence of two genetic clusters within Chinese P. capsici collection. Clonal reproduction may play a more prominent role in Yunnan Province, but non‐existence of repeated genotypes and existence of both mating types throughout all regions suggest outcrossing and sexual recombination likely play an important role in the overall epidemiology in China. Future studies would include expanded scale sampling at single regions over multiple years to better define the genetic diversity of P. capsici in China.  相似文献   

6.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

7.
The balance between clonal propagation and sexual reproduction varies among species. Although theory predicts an impact of clonal growth on both‐ within‐ and between population genetic structure, most empirical evidence available to date does not reveal sharp differences between sexually reproducing and clonal species. This has been attributed mainly to the fact that even low levels of sexual recruitment can maintain high levels of genetic diversity. Here we study the effects of prolonged clonal growth and very low rates of sexual recruitment on the genetic structure of the perennial Maianthemum bifolium, an outcrossing understorey species of temperate forests. Average genotypic diversity (0.37) of the populations, as revealed by AFLP, was above the average values reported for species of similar characteristics, but some populations were extremely poor in genotypes. Fruiting success was positively correlated with genotypic diversity, probably as a result of shortage in mating types and compatible pollen in populations poor in genotypes. This was confirmed by a pollination experiment. Fruiting success increased by a factor three when individuals were hand‐pollinated with pollen from a nearby population compared to hand‐pollinations with pollen from the own population. Furthermore, the fruiting success after natural pollination (control individuals) was positively related to number of nearby populations which could act as pollen sources. Given the limited colonization capacity of the species (no seed flow), and the long time since fragmentation of the forest fragments studied, between‐population genetic differentiation was relatively low (Φst=0.14). Lack of genetic drift due to long generation times and very limited sexual recruitment is probably responsible for this. Our results show that prolonged clonal growth and lack of sexual recruitment may affect within‐ and between‐ population genetic structure and the capability for sexual reproduction.  相似文献   

8.
A survey of spatial and temporal variation in the frequency of electrophoretically defined genotypes in the geometrid moth Alsophila pometaria revealed a high diversity of uncommon or rare asexual genotypes and clinal distributions of two of the more common clones. There was substantial year-to-year variation in genotype frequencies in seven of eleven sites. Progeny tests have revealed that sexual reproduction is uncommon in two populations and that new asexual genotypes arise from the sexual population. The recurrent origin of asexual genotypes is likely to account for the high genetic and ecological diversity of the asexual contingent of this species' populations, in contrast to the lower genetic diversity in some obligately asexual species in which such recruitment does not occur.  相似文献   

9.
The presence and extent of mitonuclear discordance in coexisting sexual and asexual lineages provides insight into 1) how and when asexual lineages emerged, and 2) the spatial and temporal scales at which the ecological and evolutionary processes influencing the evolution of sexual and asexual reproduction occur. Here, we used nuclear single‐nucleotide polymorphism (SNP) markers and a mitochondrial gene to characterize phylogeographic structure and the extent of mitonuclear discordance in Potamopyrgus antipodarum. This New Zealand freshwater snail is often used to study the evolution and maintenance of sex because obligately sexual and obligately asexual individuals often coexist. While our data indicate that sexual and asexual P. antipodarum sampled from the same lake population are often genetically similar, suggesting recent origin of these asexuals from sympatric sexual P. antipodarum, we also found significantly more population structure in sexuals vs. asexuals. This latter result suggests that some asexual lineages originated in other lakes and/or in the relatively distant past. When comparing mitochondrial and nuclear population genetic structure, we discovered that one mitochondrial haplotype (‘1A’) was rare in sexuals, but common and widespread in asexuals. Haplotype 1A frequency and nuclear genetic diversity were not associated, suggesting that the commonness of this haplotype cannot be attributed entirely to genetic drift and pointing instead to a role for selection.  相似文献   

10.
Cyclical parthenogens, which combine asexual and sexual reproduction, are good models for research into the ecological and population processes affecting the evolutionary maintenance of sex. Sex in cyclically parthenogenetic rotifers is necessary for diapausing egg production, which is essential to survive adverse conditions between planktonic growing seasons. However, within a planktonic season sexual reproduction prevents clonal proliferation. Hence, clones with a low propensity for sex should be selected, becoming dominant in the population as the growing season progresses. In this context, we studied the dynamics of the heritable variation in propensity for sexual reproduction among clones of a Brachionus plicatilis rotifer population in a temporary Mediterranean pond during the period the species occurred in plankton. Clonal isolates displayed high heritable variation in their propensity for sex. Moreover, the frequency of clones with low propensity for sex increased during the growing season, which supports the hypothesized short‐term selection for low investment in sex within a growing season. These results demonstrate (1) the inherent instability of the cyclical parthenogenetic life cycle, (2) the cost of sexual reproduction in cyclical parthenogens where sex produces diapausing eggs and (3) the role of the association between sexual reproduction and diapause in maintaining sex in these cyclical parthenogens.  相似文献   

11.
Inferring reproductive and demographic parameters of populations is crucial to our understanding of species ecology and evolutionary potential but can be challenging, especially in partially clonal organisms. Here, we describe a new and accurate method, cloncase , for estimating both the rate of sexual vs. asexual reproduction and the effective population size, based on the frequency of clonemate resampling across generations. Simulations showed that our method provides reliable estimates of sex frequency and effective population size for a wide range of parameters. The cloncase method was applied to Puccinia striiformis f.sp. tritici, a fungal pathogen causing stripe/yellow rust, an important wheat disease. This fungus is highly clonal in Europe but has been suggested to recombine in Asia. Using two temporally spaced samples of P. striiformis f.sp. tritici in China, the estimated sex frequency was 75% (i.e. three‐quarter of individuals being sexually derived during the yearly sexual cycle), indicating strong contribution of sexual reproduction to the life cycle of the pathogen in this area. The inferred effective population size of this partially clonal organism (Nc = 998) was in good agreement with estimates obtained using methods based on temporal variations in allelic frequencies. The cloncase estimator presented herein is the first method allowing accurate inference of both sex frequency and effective population size from population data without knowledge of recombination or mutation rates. cloncase can be applied to population genetic data from any organism with cyclical parthenogenesis and should in particular be very useful for improving our understanding of pest and microbial population biology.  相似文献   

12.
Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter‐genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well‐forested landscape and two in isolated forest remnants. We constructed stage‐based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well‐forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade‐offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.  相似文献   

13.
Asexual reproduction is a common and fundamental mode of reproduction in plants. Although persistence in adverse conditions underlies most known cases of clonal dominance, proximal genetic drivers remain unclear, in particular for populations dominated by a few large clones. In this study, we studied a clonal population of the riparian tree Populus alba in the Douro river basin (northwestern Iberian Peninsula) where it hybridizes with Populus tremula, a species that grows in highly contrasted ecological conditions. We used 73 nuclear microsatellites to test whether genomic background (species ancestry) is a relevant cause of clonal success, and to assess the evolutionary consequences of clonal dominance by a few genets. Additional genotyping‐by‐sequencing data were produced to estimate the age of the largest clones. We found that a few ancient (over a few thousand years old) and widespread genets dominate the population, both in terms of clone size and number of sexual offspring produced. Interestingly, large clones possessed two genomic regions introgressed from P. tremula, which may have favoured their spread under stressful environmental conditions. At the population level, the spread of large genets was accompanied by an overall ancient (>0.1 Myr) but soft decline of effective population size. Despite this decrease, and the high clonality and dominance of sexual reproduction by large clones, the Douro hybrid zone still displays considerable genetic diversity and low inbreeding. This suggests that even in extreme cases as in the Douro, asexual and sexual dominance of a few large, geographically extended individuals does not threaten population survival.  相似文献   

14.
Breeding season is the most energetically and physiologically demanding phase in the avian annual cycle, challenging adults' physiology and survival. However, the timing and extent that self‐maintenance of breeding adults is compromised during the breeding season is poorly understood. We investigated the trade‐off between reproduction and self‐maintenance in relation to breeding phase (prelaying, incubation, chick rearing) and sex in a small Arctic seabird, the little auk Alle alle. To measure a bird's allocation of time for self‐maintenance, we examined size‐adjusted body mass and immunocompetence expressed by bacteria (Escherichia coli) killing capacity (BKC) of blood plasma, heterophils/lymphocyte ratio (H/L) and their numbers of particular leucocytes per 10 000 red blood cells (RBC). We found that size‐adjusted body mass decreased as the breeding season progressed. BKC, number of heterophils and H/L values were all was significantly higher at prelaying when compared to all other phases. Interestingly, we found that heavier individuals had higher BKC and number heterophils at the prelaying and chick rearing phases than light individuals. There were no differences by sex in any studied variables. Our results indicate that immunocompetence and body mass of breeding adults decreases over the course of breeding season. The efficiency of the immune system appears to be dependent on the bird's body reserves. Our results suggest that little auks allocation of resources into reproduction negatively affects their self‐maintenance.  相似文献   

15.
Because monocarpic perennial plants have only one reproductive opportunity in their entire life, they need to ensure offspring production. Some plants reproduce both sexually and vegetatively, and vegetative reproduction could possibly compensate for seed production. Therefore, the role and significance of these reproductive modes is likely to differ between monocarps and polycarps, which can reproduce many times. Cardiocrinum cordatum var. glehnii is a monocarpic perennial that reproduces both sexually and vegetatively (bulblet formation). Here, we investigated the characteristics and contribution to population maintenance of sexual and vegetative reproduction to reveal the significance of these two reproductive modes in this species. First, we found that bulblet formation occurred in plants after the three‐leaved rosette stage. Second, resource allocation experiments revealed that although resources were mainly invested in fruit maturation after the flowering season, resource allocation was switched from sexual reproduction to vegetative reproduction if seed production was insufficient. Third, the outcrossing rate in this species varied greatly according to the environment surrounding the population. However, reproductive assurance by selfing kept seed production stable even if flowers did not receive sufficient pollen for full seed set via outcross pollination, and moreover, there was no intensive inbreeding depression. Finally, genotypic identification of ramets suggested that daughter ramets derived from vegetative reproduction received the space that the mother flowering ramet had occupied until the previous year.  相似文献   

16.

Using a mechanistic spatially explicit trait-based neighborhood-model, we quantify the impact of mutations on intraspecific spatial interactions to better understand mechanisms underlying the maintenance of genetic variation and the potential effects of these evolved interactions on the population dynamics of Arabidopsis thaliana. We use 100 twenty-fifth generation mutation accumulation (MA) lines (genotypes) derived from one founder genotype to study mutational effects on neighbor responses in a field experiment. We created individual-based maps (15,000 individuals), including phenotypic variation, to quantify mutational effects within genotypes versus between genotypes on reproduction and survival. At small-scale (within 80 cm of the focal plant), survival is enhanced but seed-set is decreased when a genotype is surrounded by different genotypes. At large-scale (within 200 cm of the focal plant), seed set is facilitated by different genotypes while the same genotype has either no effect or negative effects. The direction of the interactions among MA lines suggests that at small scale these interactions may contribute to the maintenance of genetic variation and at large scale contribute to the survival of the population. This may suggest, that, mutations potentially have immediate effects on population and community dynamics by influencing the outcome of competitive and faciliatory interactions among conspecifics.

  相似文献   

17.
Seagrass are under great stress in the tropical coast of Asia, where Enhalus acoroides is frequently the dominant species with a large food web. Here, we investigate the question of the fine‐scale genetic structure of this ecologically important foundation species, subject to severe anthropogenic disturbance in China. The genetic structure will illuminate potential mechanisms for population dynamics and sustainability, which are critical for preservation of biodiversity and for decision‐making in management and restoration. We evaluated the fine‐scale spatial genetic structure (SGS) and flowering output of E. acoroides, and indirectly estimated the relative importance of sexual versus asexual reproduction for population persistence using spatial autocorrelation analysis. Results reveal high clonal diversity for this species, as predicted from its high sexual reproduction output. The stronger Sp statistic at the ramet‐level compared with genet‐level indicates that clonality increases the SGS pattern for E. acoroides. Significant SGS at the genet‐level may be explained by the aggregated dispersal of seed/pollen cohorts. The estimated gene dispersal variance suggests that dispersal mediated by sexual reproduction is more important than clonal growth in this study area. The ongoing anthropogenic disturbance will negatively affect the mating pattern and the SGS patterns in the future due to massive death of shoots, and less frequency of sexual reproduction.  相似文献   

18.
Fungal plant pathogens, especially rust fungi (Pucciniales), are well known for their complex life cycles, which include phases of sexual and asexual reproduction. The effect of asexual multiplication on population genetic diversity has been investigated in the poplar rust fungus Melampsora larici‐populina using a nested hierarchical sampling scheme. Four hierarchical levels were considered: leaf, twig, tree and site. Both cultivated and wild poplar stands were sampled at two time points at the start and end of rust epidemics. A total of 641 fungal isolates was analysed using nine microsatellite markers. This study revealed that the genetic signature of asexual multiplication in the wild poplar stand was seen only at lower hierarchical levels (leaf and twig). Moreover, we observed an erosion of clonal structure through time, with an increase in both gene and genotypic diversity. New genotypes contributed to host infection over time, which demonstrates the importance of allo‐infection in the epidemic process in this host‐pathogen system. Compared with the wild stands, the nearly lack of detection of clonal structure in the cultivated stands reflects the higher infection level on cultivated poplars. More generally, this genetic analysis illustrates the utility of population genetics approach for elucidating the proportion of asexual reproduction in the multiplication of isolates during an epidemic, and for proper quantification of asexual dispersal in plant pathogens.  相似文献   

19.
Studies on clonal plants indicate that the proportion between clonal and sexual reproduction can be variable, depending on local habitat conditions and the biological characteristics of the species. In the present study, we assessed this question in Trifolium alpestre by assaying genetic diversity and spatial genotypic structure of natural populations with the use of allozyme markers. Populations revealed high genetic diversity as well as strong spatial structure of multilocus genotypes. The values of genetic diversity were moderately high. Spatially aggregated, identical genotypes spread up to 15 m along linear transects and across 4‐m2 plots indicate extensive clonal propagation within populations. However, the existence of numerous unique and small‐sized clones reflects significant contribution from sexual reproduction. Spatially and temporarily stochastic soil disturbances have evidently opened new opportunities for the successful sexual recruitment from the permanent soil seed bank and thus counteracted losses of genetic and genotypic diversity. Seed production in all populations during the three study years was low, in average up to 1.5–2.4 seeds per shoot. The almost total lack of seed set for 57 bagged flower heads on genotypes grown in a common garden indicates that T. alpestre needs pollinators for seed production.  相似文献   

20.
Three semi‐arid savanna grasses in Botswana (Stipagrostis uniplumis, Eragrostis lehmanniana, and Aristida stipitata) were sampled to quantify their belowground bud banks during the dormant season and to estimate their relative allocation to vegetative and sexual reproduction. Bud banks of these African perennial caespitose grasses were also compared with four perennial caespitose grasses of semi‐arid North American grasslands. The three African grasses each maintained approximately two buds per tiller and showed a high percentage (88–99%) of tillers producing seed. Only E. lehmanniana produced new aerial tillers from axillary buds at elevated nodes on the stem as well as from the belowground bud bank. Compared with species of North American grasslands, these African grasses produced fewer belowground buds but showed a much higher percentage of tillers producing seed. These patterns indicate relatively greater belowground meristem limitation, lower allocation to vegetative reproduction (tillering) and higher allocation to seed reproduction in these African grasses, although studies of more species are needed to assess the generality of this pattern. The management of savannas in ways that favour the maintenance of a reserve population of belowground buds may increase the ability of grasses to respond to pulses of resource availability, increase their compensatory growth capacity following grazing or drought, and decrease the invasibility of these plant communities by exotic species, whereas maintaining allocation to sexual reproduction may be important for conserving genetic variation and enhancing their capacity to adapt to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号