首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture‐independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid‐gut regions M1, M2 and M4. However, the completely anoxic M3 region harboured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri‐dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in different life stages of P. apterus indicated that the symbiotic bacterial community is vertically transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding. Comparing the mid‐gut M3 microbial communities of P. apterus individuals from five different populations and after feeding on three different diets revealed that the community composition is qualitatively and quantitatively very stable, with the six predominant taxa being consistently abundant. Our findings suggest that the firebug mid‐gut microbiota constitutes a functionally important and possibly coevolved symbiotic community.  相似文献   

2.
3.
Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated. Varying degrees of nest sharing between Megalomyrmex social parasites (Solenopsidini) and their fungus‐growing ant hosts (Attini) from the genera Cyphomyrmex, Trachymyrmex and Sericomyrmex allowed us to address this question, as both ant lineages rely on the same fungal diet, interact in varying intensities and are distantly related. We used tag‐encoded FLX 454 pyrosequencing and diagnostic PCR to map bacterial symbiont diversity across the Megalomyrmex phylogenetic tree, which also contains free‐living generalist predators. We show that social parasites and hosts share a subset of bacterial symbionts, primarily consisting of Entomoplasmatales, Bartonellaceae, Acinetobacter, Wolbachia and Pseudonocardia and that Entomoplasmatales and Bartonellaceae can co‐infect specifically associated combinations of hosts and social parasites with identical 16S rRNA genotypes. We reconstructed in more detail the population‐level infection dynamics for Entomoplasmatales and Bartonellaceae in Megalomyrmex symmetochus guest ants and their Sericomyrmex amabilis hosts. We further assessed the stability of the bacterial communities through a diet manipulation experiment and evaluated possible transmission modes in shared nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional benefits from bacterial symbiont transfer even when they are not closely related.  相似文献   

4.
Fungus‐growing termites of the subfamily Macrotermitinae together with their highly specialized fungal symbionts (Termitomyces) are primary decomposers of dead plant matter in many African savanna ecosystems. The termites provide crucial ecosystem services also by modifying soil properties, translocating nutrients, and as important drivers of plant succession. Despite their obvious ecological importance, many basic features in the biology of fungus‐growing termites and especially their fungal symbionts remain poorly known, and no studies have so far focused on possible habitat‐level differences in symbiont diversity across heterogeneous landscapes. We studied the species identities of Macrotermes termites and their Termitomyces symbionts by excavating 143 termite mounds at eight study sites in the semiarid Tsavo Ecosystem of southern Kenya. Reference specimens were identified by sequencing the COI region from termites and the ITS region from symbiotic fungi. The results demonstrate that the regional Macrotermes community in Tsavo includes two sympatric species (M. subhyalinus and M. michaelseni) which cultivate and largely share three species of Termitomyces symbionts. A single species of fungus is always found in each termite mound, but even closely adjacent colonies of the same termite species often house evolutionarily divergent fungi. The species identities of both partners vary markedly between sites, suggesting hitherto unknown differences in their ecological requirements. It is apparent that both habitat heterogeneity and disturbance history can influence the regional distribution patterns of both partners in symbiosis.  相似文献   

5.
石油污染对土壤微生物群落多样性的影响   总被引:3,自引:0,他引:3  
土壤中的微生物主要有细菌、放线菌、真菌三大类群,微生物在石油污染的土壤中发挥着维持生态平衡和生物降解的功能。文中以四川省遂宁市射洪县某废弃油井周围不同程度石油污染土壤为供试土壤,首先对各组供试土壤的基本理化性质进行测定分析;然后采用平板菌落计数法测定了供试土壤中三大类微生物数量的变化,结果表明:相比未被污染的对照土壤,石油污染的土壤中细菌、放线菌、真菌数量均减少,并且土壤中可培养微生物的数量与土壤含水量呈正相关;再采用454焦磷酸测序技术对土壤中的细菌群落多样性及变化进行16S rRNA基因分析。在所有供试的4个土壤样品中,共鉴定出不少于23 982个有效读取序列和6 123种微生物,相比于未被污染的对照土壤,石油污染土壤中细菌的种类更加丰富,主要优势门类为酸杆菌门、放线菌门、拟杆菌门、绿弯菌门、浮霉菌门和变形菌门。但不同土壤样品中优势菌群的群落结构有所差异,石油污染的土壤中,酸杆菌门、放线菌门和变形菌门的数量最多,未被石油污染的土壤中,放线菌门、拟杆菌门和变形菌门的数量最多。  相似文献   

6.
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically ‘lower termites’ are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood‐feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus‐level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host‐specific distribution of the bacterial lineages in termite guts are best explained by diet‐related differences in the availability of microhabitats and functional niches.  相似文献   

7.
Microbial compositions of human and animal feces from South Korea were analyzed and characterized. In total, 38 fecal samples (14 healthy adult humans, 6 chickens, 6 cows, 6 pigs and 6 geese) were analyzed by 454 pyrosequencing of the V2 region of the 16S rRNA gene. Four major phyla, Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were identified in the samples. Principal coordinate analysis suggested that microbiota from the same host species generally clustered, with the exception of those from humans, which exhibited sample-specific compositions. A network-based analysis revealed that several operational taxonomic units (OTUs), such as Lactobacillus sp., Clostridium sp. and Prevotella sp., were commonly identified in all fecal sources. Other OTUs were present only in fecal samples from a single organism. For example, Yania sp. and Bifidobacterium sp. were identified specifically in chicken and human fecal samples, respectively. These specific OTUs or their respective biological markers could be useful for identifying the sources of fecal contamination in water by microbial source tracking.  相似文献   

8.
Yamada A  Inoue T  Noda S  Hongoh Y  Ohkuma M 《Molecular ecology》2007,16(18):3768-3777
Nitrogen fixation by gut microorganisms is one of the crucial aspects of symbiosis in wood-feeding termites since these termites thrive on a nitrogen-poor diet. In order to understand the evolution of this symbiosis, we analysed the nitrogenase structural gene nifH in the gut microbial communities. In conjunction with the published sequences, we compared approximately 320 putatively functional NifH protein sequences obtained from a total of 19 termite samples that represent all the major branches of their currently proposed phylogeny, and from one species of the cockroach Cryptocercus that shares a common ancestor with termites. Using multivariate techniques for clustering and ordination, a phylogeny of NifH protein sequences was created and plotted variously with host termite families, genera, and species. Close concordance was observed between NifH communities and the host termites at genus level, but family level relationships were not always congruent with accepted termite clade structure. Host groups examined included basal families (Mastotermitidae, Termopsidae, Kalotermitidae, as well as Cryptocercus), the most derived lower termite family Rhinotermitidae, and subfamilies representing the advanced and highly diverse apical family Termitidae (Macrotermitinae, Termitinae, and Nasutitermitinae). This selection encompassed the major nesting and feeding styles recognized in termites, and it was evident that NifH phylogenetic divergence, as well as the occurrence of alternative nitrogenase-type NifH, was to some extent dependent on host lifestyle as well as phylogenetic position.  相似文献   

9.
To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.  相似文献   

10.
11.
The human gut harbors a vast range of microbes that have significant impact on health and disease. Therefore, gut microbiome profiling holds promise for use in early diagnosis and precision medicine development. Accurate profiling of the highly complex gut microbiome requires DNA extraction methods that provide sufficient coverage of the original community as well as adequate quality and quantity. We tested nine different DNA extraction methods using three commercial kits (TianLong Stool DNA/RNA Extraction Kit (TS), QIAamp DNA Stool Mini Kit (QS), and QIAamp PowerFecal DNA Kit (QP)) with or without additional bead-beating step using manual or automated methods and compared them in terms of DNA extraction ability from human fecal sample. All methods produced DNA in sufficient concentration and quality for use in sequencing, and the samples were clustered according to the DNA extraction method. Inclusion of bead-beating step especially resulted in higher degrees of microbial diversity and had the greatest effect on gut microbiome composition. Among the samples subjected to bead-beating method, TS kit samples were more similar to QP kit samples than QS kit samples. Our results emphasize the importance of mechanical disruption step for a more comprehensive profiling of the human gut microbiome.  相似文献   

12.
Fungus-growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus-growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host–termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.  相似文献   

13.
The tobacco hornworm, Manduca sexta , is a model lepidopteran insect used to study the pathogenic and mutualistic phases of entomopathogenic nematodes (EPNs) and their bacterial symbionts. While intestinal microbial communities could potentially compete with the EPN and its bacterial partner for nutrient resources of the insect, the microbial gut community had not been characterized previously. Here, we show that the midgut of M. sexta raised on an artificial diet contained mostly Gram-positive cocci and coryneforms including Staphylococcus, Pediococcus, Micrococcus and Corynebacterium . Major perturbation in the gut community was observed on addition of antibiotics to the diet. Paenibacillus and several Proteobacteria such as Methylobacterium, Sphingomonas and Acinetobacter were primary genera identified under these conditions. Furthermore, the reproduction of the nematode Steinernema carpocapsae was less efficient, and the level of nematode colonization by its symbiont Xenorhabdus nematophila reduced, in insects reared on a diet containing antibiotics. The effect of antibiotics and perturbation of gut microbiota on nematode reproduction is discussed.  相似文献   

14.
The attine ants are a monophyletic lineage that switched to fungus farming ca. 55–60 MYA. They have become a model for the study of complex symbioses after additional fungal and bacterial symbionts were discovered, but their abdominal endosymbiotic bacteria remain largely unknown. Here, we present a comparative microbiome analysis of endosymbiotic bacteria spanning the entire phylogenetic tree. We show that, across 17 representative sympatric species from eight genera sampled in Panama, abdominal microbiomes are dominated by Mollicutes, α‐ and γ‐Proteobacteria, and Actinobacteria. Bacterial abundances increase from basal to crown branches in the phylogeny reflecting a shift towards putative specialized and abundant abdominal microbiota after the ants domesticated gongylidia‐bearing cultivars, but before the origin of industrial‐scale farming based on leaf‐cutting herbivory. This transition coincided with the ancestral single colonization event of Central/North America ca. 20 MYA, documented in a recent phylogenomic study showing that almost the entire crown group of the higher attine ants, including the leaf‐cutting ants, evolved there and not in South America. Several bacterial species are located in gut tissues or abdominal organs of the evolutionarily derived, but not the basal attine ants. The composition of abdominal microbiomes appears to be affected by the presence/absence of defensive antibiotic‐producing actinobacterial biofilms on the worker ants' cuticle, but the significance of this association remains unclear. The patterns of diversity, abundance and sensitivity of the abdominal microbiomes that we obtained explore novel territory in the comparative analysis of attine fungus farming symbioses and raise new questions for further in‐depth research.  相似文献   

15.
The fungus-growing termites Macrotermes cultivate the obligate ectosymbiontic fungi, Termitomyces. While their relationship has been extesively studied, little is known about the gut bacterial symbionts, which also presumably play a crucial role for the nutrition of the termite host. In this study, we investigated the bacterial gut microbiota in two colonies of Macrotermes gilvus, and compared the diversity and community structure of bacteria among nine termite morphotypes, differing in caste and/or age, using terminal restriction fragment length polymorphism (T-RFLP) and clonal analysis of 16S rRNA. The obtained molecular community profiles clustered by termite morphotype rather than by colony, and the clustering pattern was clearly more related to a difference in age than to caste. Thus, we suggest that the bacterial gut microbiota change in relation to the food of the termite, which comprises fallen leaves and the fungus nodules of Termitomyces in young workers, and leaves degraded by the fungi, in old workers. Despite these intracolony variations in bacterial gut microbiota, their T-RFLP profiles formed a distinct cluster against those of the fungus garden, adjacent soil and guts of sympatric wood-feeding termites, implying a consistency and uniqueness of gut microbiota in M. gilvus. Since many bacterial phylotypes from M. gilvus formed monophyletic clusters with those from distantly related termite species, we suggest that gut bacteria have co-evolved with the termite host and form a microbiota specific to a termite taxonomic and/or feeding group, and furthermore, to caste and age within a termite species.  相似文献   

16.
[Purpose] To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children.[Methods] The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou’s evenness, and Faith’s phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2.[Results] The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA.[Conclusion] Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.  相似文献   

17.
Noninvasive sampling methods for studying intestinal microbiomes are widely applied in studies of endangered species and in those conducting temporal monitoring during manipulative experiments. Although existing studies show that noninvasive sampling methods among different taxa vary in their accuracy, no studies have yet been published comparing nonlethal sampling methods in adult amphibians. In this study, we compare microbiomes from two noninvasive sample types (faeces and cloacal swabs) to that of the large intestine in adult cane toads, Rhinella marina. We use 16S rRNA gene sequencing to investigate how microbial communities change along the digestive tract and which nonlethal sampling method better represents large intestinal microbiota. We found that cane toads' intestinal microbiota was dominated by Bacteroidetes, Proteobacteria and Firmicutes and, interestingly, we also saw a high proportion of Fusobacteria, which has previously been associated with marine species and changes in frog immunity. The large and small intestine of cane toads had a similar microbial composition, but the large intestine showed higher diversity. Our results indicate that cloacal swabs were more similar to large intestine samples than were faecal samples, and small intestine samples were significantly different from both nonlethal sample types. Our study provides valuable information for future investigations of the cane toad gut microbiome and validates the use of cloacal swabs as a nonlethal method to study changes in the large intestine microbiome. These data provide insights for future studies requiring nonlethal sampling of amphibian gut microbiota.  相似文献   

18.
Microbes can have important impacts on their host's survival. Captive breeding programs for endangered species include periods of captivity that can ultimately have an impact on reintroduction success. No study to date has investigated the impacts of captive diet on the gut microbiota during the relocation process of generalist species. This study simulated a captive breeding program with white‐footed mice (Peromyscus leucopus) to describe the variability in gut microbial community structure and composition during captivity and relocation in their natural habitat, and compared it to wild individuals. Mice born in captivity were fed two different diets, a control with dry standardized pellets and a treatment with nonprocessed components that reflect a version of their wild diet that could be provided in captivity. The mice from the two groups were then relocated to their natural habitat. Relocated mice that had the treatment diet had more phylotypes in common with the wild‐host microbiota than mice under the control diet or mice kept in captivity. These results have broad implications for our understanding of microbial community dynamics and the effects of captivity on reintroduced animals, including the potential impact on the survival of endangered species. This study demonstrates that ex situ conservation actions should consider a more holistic perspective of an animal's biology including its microbes.  相似文献   

19.
美洲大蠊(Periplaneta americana)肠道微生物多样性分析   总被引:1,自引:0,他引:1  
【目的】分析美洲大蠊(Periplaneta americana)肠道微生物群落的组成。【方法】以美洲大蠊肠道微生物基因组为模板,Bact-27F和Univ-1492R为引物,PCR扩增16S rRNA基因,连接pGEM-T载体,构建肠道微生物16S rRNA基因文库,并对肠道微生物的组成及多样性进行分析。【结果】美洲大蠊肠道微生物主要包括变形杆菌门(Proteobacteria,66.4%),拟杆菌门(Bacteroidetes,17.8%),厚壁菌门(Firmicutes,14.5%),梭杆菌门(Fusobacteria,0.6%),以及未分类微生物(unclassified bacteria,0.6%)。系统发育分析显示,15%的美洲大蠊肠道微生物16S rRNA基因序列与亲缘关系较近的杂食蟑螂肠道微生物的16S rRNA基因序列聚于一支;59%的美洲大蠊肠道微生物16S rRNA基因序列与不同食性动物肠道微生物的16S rRNA基因序列聚于一支。另一方面,18%的美洲大蠊肠道微生物16S rRNA基因序列与潜在的微生物致病菌一致性高于99%,说明美洲大蠊是一类潜在的致病菌携带者。【结论】美洲大蠊肠道微生物群落组成多样,宿主系统进化以及杂食性生活方式对其肠道微生物的组成有较大影响。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号