首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Floral organ identity genes in the orchid Dendrobium crumenatum   总被引:1,自引:0,他引:1  
Orchids are members of Orchidaceae, one of the largest families in the flowering plants. Among the angiosperms, orchids are unique in their floral patterning, particularly in floral structures and organ identity. The ABCDE model was proposed as a general model to explain flower development in diverse plant groups, however the extent to which this model is applicable to orchids is still unknown. To investigate the regulatory mechanisms underlying orchid flower development, we isolated candidates for A, B, C, D and E function genes from Dendrobium crumenatum. These include AP2-, PI/GLO-, AP3/DEF-, AG- and SEP-like genes. The expression profiles of these genes exhibited different patterns from their Arabidopsis orthologs in floral patterning. Functional studies showed that DcOPI and DcOAG1 could replace the functions of PI and AG in Arabidopsis, respectively. By using chimeric repressor silencing technology, DcOAP3A was found to be another putative B function gene. Yeast two-hybrid analysis demonstrated that DcOAP3A/B and DcOPI could form heterodimers. These heterodimers could further interact with DcOSEP to form higher protein complexes, similar to their orthologs in eudicots. Our findings suggested that there is partial conservation in the B and C function genes between Arabidopsis and orchid. However, gene duplication might have led to the divergence in gene expression and regulation, possibly followed by functional divergence, resulting in the unique floral ontogeny in orchids.  相似文献   

5.
6.
Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant‐pathogenic bacteria that transform plant floral organs into leaf‐like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma‐secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma‐infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two‐hybrid and in planta transient co‐expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin–proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody‐inducing gene family of ‘phyllogens’.  相似文献   

7.
Few studies have quantified the full range of pre‐ and postzygotic barriers that limit introgression between closely related plant species. Here, we assess the strength of four isolating mechanisms operating between two morphologically similar and very closely related sympatric orchid taxa, Chiloglottis valida and C. aff. jeanesii. Each taxon sexually attracts its specific wasp pollinator via distinct floral volatile chemistry. Behavioral experiments with flowers and synthetic versions of their floral volatiles confirmed that very strong pollinator isolation is mediated by floral odor chemistry. However, artificially placing flowers of the two taxa in contact proximity revealed the potential for rare interspecific pollination. Although we found hybrid vigor in F1 hybrids produced by hand‐crossing, genetic analysis at both nuclear and chloroplast loci showed significant and moderate‐to‐strong genetic differentiation between taxa. A Bayesian clustering method for the detection of introgression at nuclear loci failed to find any evidence for hybridization across 571 unique genotypes at one site of sympatry. Rather than inhibiting gene flow, postpollination barriers surveyed here show no contribution to overall reproductive isolation. This demonstrates the primacy of pollinators in maintaining species boundaries in these orchids, which display one of the strongest known examples of prepollination floral isolation.  相似文献   

8.
9.

Background  

The ornamental plant Gerbera hybrida bears complex inflorescences with morphologically distinct floral morphs that are specific to the sunflower family Asteraceae. We have previously characterized several MADS box genes that regulate floral development in Gerbera. To study further their behavior in higher order complex formation according to the quartet model, we performed yeast two- and three-hybrid analysis with fourteen Gerbera MADS domain proteins to analyze their protein-protein interaction potential.  相似文献   

10.
 MADS box genes are likely involved in many different steps of plant development, since their RNAs accumulate in a wide variety of tissues, including roots, stems, leaves, flowers and embryos. In flowers, MADS box genes regulate the early step of specifying floral meristem identity as well as the later step of determining the fate of floral organ primordia. Here we describe the isolation and characterization of a new MADS box gene from Arabidopsis, AGL9. Sequence analyses indicate that AGL9 represents the putative ortholog of the FBP2 and TM5 genes from petunia and tomato, respectively. In situ hybridization analyses show that AGL9 RNA begins to accumulate after the onset of expression of the floral meristem identity genes, but before the activation of the organ identity genes. These data indicate that AGL9 functions early in flower development to mediate between the interaction of these two classes of genes. Later in flower development, AGL9 RNA accumulates in petals, stamens, and carpels, suggesting a role for AGL9 in controlling the development of these organs. Received: 4 May 1997 / Accepted: 14 July 1997  相似文献   

11.
12.
High pollinator specificity and the potential for simple genetic changes to affect pollinator attraction make sexually deceptive orchids an ideal system for the study of ecological speciation, in which change of flower odour is likely important. This study surveys reproductive barriers and differences in floral phenotypes in a group of four closely related, coflowering sympatric Ophrys species and uses a genotyping‐by‐sequencing (GBS) approach to obtain information on the proportion of the genome that is differentiated between species. Ophrys species were found to effectively lack postpollination barriers, but are strongly isolated by their different pollinators (floral isolation) and, to a smaller extent, by shifts in flowering time (temporal isolation). Although flower morphology and perhaps labellum coloration may contribute to floral isolation, reproductive barriers may largely be due to differences in flower odour chemistry. GBS revealed shared polymorphism throughout the Ophrys genome, with very little population structure between species. Genome scans for FST outliers identified few markers that are highly differentiated between species and repeatable in several populations. These genome scans also revealed highly differentiated polymorphisms in genes with putative involvement in floral odour production, including a previously identified candidate gene thought to be involved in the biosynthesis of pseudo‐pheromones by the orchid flowers. Taken together, these data suggest that ecological speciation associated with different pollinators in sexually deceptive orchids has a genic rather than a genomic basis, placing these species at an early phase of genomic divergence within the ‘speciation continuum’.  相似文献   

13.
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n‐alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species‐specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator‐mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two‐locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator‐mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator‐driven ecological speciation.  相似文献   

14.
15.
It has often been proposed that nectarless deceptive orchid species exploit naïve pollinators in search of food before they learn to avoid their flowers, and that intraspecific floral trait polymorphism, often noted in this plant group, could prolong the time needed for learning, thus increasing orchid reproductive success. We tested the importance of avoidance learning in a European deceptive orchid, Anacamptis morio, which has been reported to have a highly variable fragrance bouquet among individuals. We used an indirect approach, i.e. we facilitated pollinators’ ability to learn to avoid A. morio by adding anisaldehyde to selected inflorescences, a scent compound that is easily perceived by the natural pollinators and produced in large quantities by the closely related, nectar producing Anacamptis coriophora, a species that shares pollinator species with A. morio. In a series of three experiments (in artificial arrays, in natural populations and in bumblebee behavioural observations), we consistently found no difference either of reproductive success of or visitation rates to scent‐added versus control inflorescences. We also found that the decrease of reproductive success over time in artificial populations of this deceptive species was not as important as expected. Together, these data suggest that pollinators do not fully learn to avoid deceptive inflorescences, and that pollinator avoidance behaviour alone may explain the lower reproductive success usually found in deceptive orchids. We discuss the possible explanations for this pattern in deceptive orchids, particularly in relation to pollinator cognition and learning abilities. Lastly, in light of our results, the potential for higher average reproductive success in deceptive orchids with high phenotypic variability driven by avoidance learning thus appears to be challenged.  相似文献   

16.
Male solitary bees typically use emergence‐nesting areas and/or flower patches of food plants, where receptive females are relatively numerous, as rendezvous sites. However, mate‐seeking males have been also observed at food‐deceptive orchid patches, where numerous encounters with foraging females can hardly be expected, owing to the lack of floral rewards. Here, we describe the male mate‐seeking and mating behaviors of the Japanese long‐horned bee Eucera nipponensis at habitats of the food‐deceptive orchid Cymbidium goeringii. On the basis of the results, we report empty flower patches are not necessarily fruitless sites for mate‐seeking males because naive female bees, which are highly likely to be recently emerged and unmated, can be attracted to non‐rewarding orchids. We also suggest a possibility that a small number of the males could receive a “sexual reward” (i.e. mating opportunities), owing to the food‐deceptive orchid, in return for their pollination work. This occasional interaction could represent the initial stage in the evolution of sexually deceptive orchids from food‐deceptive orchids.  相似文献   

17.
We have initiated a systematic functional analysis of the MADS box, intervening region, K domain, C domain-type MADS box gene family in petunia. The starting point for this has been a reverse-genetics approach, aiming to select for transposon insertions into any MADS box gene. We have developed and applied a family signature insertion screening protocol that is highly suited for this purpose, resulting in the isolation of 32 insertion mutants in 20 different MADS box genes. In addition, we identified three more MADS box gene insertion mutants using a candidate-gene approach. The defined insertion lines provide a sound foundation for a systematic functional analysis of the MADS box gene family in petunia. Here, we focus on the analysis of Floral Binding Protein2 (FBP2) and FBP5 genes that encode the E-function, which in Arabidopsis has been shown to be required for B and C floral organ identity functions. fbp2 mutants display sepaloid petals and ectopic inflorescences originating from the third floral whorl, whereas fbp5 mutants appear as wild type. In fbp2 fbp5 double mutants, reversion of floral organs to leaf-like organs is increased further. Strikingly, ovules are replaced by leaf-like structures in the carpel, indicating that in addition to the B- and C-functions, the D-function, which specifies ovule development, requires E-function activity. Finally, we compare our data with results obtained using cosuppression approaches and conclude that the latter might be less suited for assigning functions to individual members of the MADS box gene family.  相似文献   

18.
The AGAMOUS-LIKE6 (AGL6)-like genes are ancient MADS-box genes and are functionally studied in a few model plants. The knowledge of these genes in wheat remains limited. Here, by studying a ‘double homoeolog mutant’ of the AGL6 gene in tetraploid wheat, we showed that AGL6 was required for the development of all four whorls of floral organs with dosage-dependent effect on floret fertility. Yeast two-hybrid analyses detected interactions of AGL6 with all classes of MADS-box proteins in the ABCDE model for floral organ development. AGL6 was found to interact with several additional proteins, including the G protein β and γ (DEP1) subunits. Analysis of the DEP1-B mutant showed a significant reduction in spikelet number per spike in tetraploid wheat, while overexpression of AGL6 in common wheat increased the spikelet number per spike and hence the grain number per spike. RNA-seq analysis identified the regulation of several meristem activity genes by AGL6, such as FUL2 and TaMADS55. Our work therefore extensively updated the wheat ABCDE model and proposed an alternative approach to improve wheat grain yield by manipulating the AGL6 gene.  相似文献   

19.
  • The Orchidaceae family presents one of the most extravagant pollination mechanisms: deception. While many studies on reproductive success have been performed on food‐deception orchids, less have been performed on sexually deceptive orchids. Here, we focused on Ophrys balearica P. Delforge, an endemic orchid of the Balearic Islands, to study its reproductive ecology, the spatio‐temporal variation of its reproductive success and the individual (floral display and geospatial position) and population parameters (patch size, shape and density) that affect its reproductive success.
  • We performed hand‐pollination experiments, along with the recording of floral display parameters and GPS position of over 1,100 individuals from seven populations in two consecutive years. We applied, for the first time, GIS tools to analyse the effects of individual’s position within the population on the reproductive success. Reproductive success was measured both in male (removed pollinia) and female (fruit set) fitness.
  • The results confirm that this species is pollinator‐dependent and mostly allogamous, but also self‐compatible. This species showed high values for the cumulative inbreeding depression index and high pollen limitation. Male fitness was almost equal to female fitness between years and populations, and reproductive success exhibited huge spatio‐temporal variation.
  • Although we did not find strong correlations between floral display and reproductive success, patches with low‐plant density and individuals in the external portion of the population showed significantly higher plant fitness. These findings must be considered in conservation actions for endangered orchid species, especially considering that most orchids are strongly dependent on pollinators for their species’ fitness.
  相似文献   

20.
The complex flower organization of orchids offers an opportunity to discover new variant genes and different levels of complexity in the morphogenesis of flowers. In this study, four B-class Phalaenopsis DEF-like MADS-box genes were identified and characterized, including PeMADS2, PeMADS3, PeMADS4 and PeMADS5. Differential expression profiles of these genes were detected in the floral organs of P. equestris, suggesting distinctive roles in the floral morphogenesis of orchids. Furthermore, expressions of these genes were varied to different extents in the peloric mutants with lip-like petals. Expression of PeMADS4 was in lips and columns of wild type, and it extended to the lip-like petals in the peloric mutant. Expression of PeMADS5 was mainly in petals and to a lesser extent in columns in the wild type, whereas it was completely eliminated in the peloric mutant. Disruption of the PeMADS5 promoter region of the peloric mutant was detected at nucleotide +312 relative to the upstream of translational start codon, suggesting that a DNA rearrangement has occurred in the peloric mutant. Genomic structure analysis of the PeMADS5 showed that the exon length was conserved in exons 1-6, similar to DEF-like genes of other plants. Collectively, this is the first report that four DEF-like MADS genes were identified in a single monocotyledonous species and that they may play distinctive morphogenetic roles in the floral development of an orchid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号