首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A new freshwater benthic diatom genus, Microfissurata gen. nov., was identified from light and scanning electron micrographs. The most characteristic morphological feature (referred to also by the name of the new genus) is the structure of the striae/alveoli, which are simple, mostly uninterrupted, transapical slits. The combination of characteristics of the new genus is unique. It includes two new species: Microfissurata paludosa Cantonati et Lange‐Bert. sp. nov. and M. australis Van de Vijver et Lange‐Bert. sp. nov., distributed in Europe and on an austral island, respectively. The new genus occurs in freshwater dystrophic lakes, pools, seepage springs, mires, and in intermittently wet terrestrial habitats. It is not abundant but widespread wherever these habitat types are well developed, in Nordic‐alpine and sub‐Antarctic areas. Overall, the new genus appears to be mostly epiphytic (bryophilous) and capable of tolerating a wide range of moisture conditions (xerotolerant). The finding of the type species (M. paludosa) in a well‐investigated area like central Europe highlights the diatom species richness of dystrophic habitats and their importance for diatom biodiversity conservation.  相似文献   

2.
3.
4.
Strong environmental gradients can affect the genetic structure of plant populations, but little is known as to whether closely related species respond similarly or idiosyncratically to ecogeographic variation. We analysed the extent to which gradients in temperature and rainfall shape the genetic structure of four Stipa species in four bioclimatic regions in Jordan. Genetic diversity, differentiation and structure of Stipa species were investigated using amplified fragment length polymorphism (AFLP) molecular markers. For each of the four study species, we sampled 120 individuals from ten populations situated in distinct bioclimatic regions and assessed the degree of genetic diversity and genetic differentiation within and among populations. The widespread ruderals Stipa capensis and S. parviflora had higher genetic diversity than the geographically restricted semi‐desert species Sarabica and S. lagascae. In three of the four species, genetic diversity strongly decreased with precipitation, while genetic diversity increased with temperature in S. capensis. Most genetic diversity resided among populations in the semi‐desert species (ΦST = 0.572/0.595 in S. arabica/lagascae) but within populations in the ruderal species (ΦST = 0.355/0.387 S. capensis/parviflora). Principal coordinate analysis ( PCoA) and STRUCTURE analysis showed that Stipa populations of all species clustered ecogeographically. A genome scan revealed that divergent selection at particular AFLP loci contributed to genetic differentiation. Irrespective of their different life histories, Stipa species responded similarly to the bioclimatic gradient in Jordan. We conclude that, in addition to predominant random processes, steep climatic gradients might shape the genetic structure of plant populations.  相似文献   

5.
6.
Interacting species of pollinator–host systems, especially the obligate ones, are sensitive to habitat fragmentation, due to the nature of mutual dependence. Comparative studies of genetic structure can provide insights into how habitat fragmentation contributes to patterns of genetic divergence among populations of the interacting species. In this study, we used microsatellites to analyse genetic variation in Chinese populations of a typical mutualistic system – Ficus pumila and its obligate pollinator Wiebesia sp. 1 – in a naturally fragmented landscape. The plants and wasps showed discordant patterns of genetic variation and geographical divergence. There was no significant positive relationship in genetic diversity between the two species. Significant isolation‐by‐distance (IBD) patterns occurred across the populations of F. pumila and Wiebesia sp. 1 as whole, and IBD also occurred among island populations of the wasps, but not the plants. However, there was no significant positive relationship in genetic differentiation between them. The pollinator populations had significantly lower genetic variation in small habitat patches than in larger patches, and three island pollinator populations showed evidence of a recent bottleneck event. No effects of patch size or genetic bottlenecks were evident in the plant populations. Collectively, the results indicate that, in more fragmented habitats, the pollinators, but not the plants, have experienced reduced genetic variation. The contrasting patterns have multiple potential causes, including differences in longevity and hence number of generations experiencing fragmentation; different dispersal patterns, with the host's genes dispersed as seeds as well as a result of pollen dispersal via the pollinator; asymmetrical responses to fluctuations in partner populations; and co‐existence of a rare second pollinating wasp on some islands. These results indicate that strongly interdependent species may respond in markedly different ways to habitat fragmentation.  相似文献   

7.
Successful geographic range expansion by parasites and parasitoids may also require host range expansion. Thus, the evolutionary advantages of host specialization may trade off against the ability to exploit new host species encountered in new geographic regions. Here, we use molecular techniques and confirmed host records to examine biogeography, population divergence, and host flexibility of the parasitoid fly, Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically by eavesdropping on male cricket calling songs; these songs vary greatly among the known host species of crickets. Using both nuclear and mitochondrial genetic markers, we (a) describe the geographical distribution and subdivision of genetic variation in O. ochracea from across the continental United States, the Mexican states of Sonora and Oaxaca, and populations introduced to Hawaii; (b) demonstrate that the distribution of genetic variation among fly populations is consistent with a single widespread species with regional host specialization, rather than locally differentiated cryptic species; (c) identify the more‐probable source populations for the flies introduced to the Hawaiian islands; (d) examine genetic variation and substructure within Hawaii; (e) show that among‐population geographic, genetic, and host song distances are all correlated; and (f) discuss specialization and lability in host‐finding behavior in light of the diversity of cricket songs serving as host cues in different geographically separate populations.  相似文献   

8.
Lobophora is a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep‐water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed that Lobophora species diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo‐Pacific. This study used three molecular markers (cox3, rbcL, psbA), different single‐marker species delimitation methods (GMYC, ABGD, PTP), and morphological evidence to evaluate Lobophora species diversity in the Western Atlantic and the Eastern Pacific oceans. Cox3 provided the greatest number of primary species hypotheses(PSH), followed by rbcL and then psbA. GMYC species delimitation analysis was the most conservative across all three markers, followed by PTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinct Lobophora species were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described: L. adpressa sp. nov., L. cocoensis sp. nov., L. colombiana sp. nov., L. crispata sp. nov., L. delicata sp. nov., L. dispersa sp. nov., L. panamensis sp. nov., and L. tortugensis sp. nov. This study showed that the best approach to confidently identify Lobophora species is to analyze DNA sequences (preferably cox3 and rbcL) followed by comparative morphological and geographical assessment.  相似文献   

9.
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.  相似文献   

10.
11.
  • Since tropical trees often have long generation times and relatively small reproductive populations, breeding systems and genetic variation are important for population viability and have consequences for conservation. Miconia albicans is an obligate, diplosporous, apomictic species widespread in the Brazilian Cerrado, the savanna areas in central Brazil and elsewhere in the Neotropics. The genetic variability would be, theoretically, low within these male‐sterile and possibly clonal populations, although some variation would be expected due to recombination during restitutional meiosis.
  • We used ISSR markers to assess genetic diversity of M. albicans and to compare with other tropical trees, including invasive species of Melastomataceae. A total of 120 individuals from six populations were analysed using ten ISSR primers, which produced 153 fully reproducible fragments.
  • The populations of M. albicans presented mean Shannon's information index (I) of 0.244 and expected heterozygosity (He) of 0.168. Only two pairs of apparently clonal trees were identified, and genetic diversity was relatively high. A hierarchical amova for all ISSR datasets showed that 74% of the variance was found among populations, while only 26% of the variance was found within populations of this species. Multivariate and Bayesian analyses indicated marked separation between the studied populations.
  • The genetic diversity generated by restitutional meiosis, polyploidy and possibly other genome changes may explain the morpho‐physiological plasticity and the ability of these plants to differentiate and occupy such a wide territory and different environmental conditions. Producing enormous amounts of bird‐dispersed fruits, M. albicans possess weedy potential that may rival other Melastomataceae alien invaders.
  相似文献   

12.
Pisolithus are ectomycorrhizal fungi that associate with roots of numerous plant species in natural and plantation forests worldwide. Despite the fact that Pisolithus spp. are present in plantation forests in many countries, knowledge of the genetic population structure of Pisolithus spp. remains limited. In this study, we have tested the hypothesis that a propensity for long-distance spore dispersal in Pisolithus microcarpus, along with the widespread distribution of potential eucalypt and acacia plant hosts in south-eastern Australia facilitates gene flow that limits population differentiation. Five polymorphic simple sequence repeat markers were used to investigate the population structure of P. microcarpus. Isolates were grouped according to geographical origin and isolate genotypes were analysed among the geographical populations. Pairwise F ST estimates indicated limited genetic differentiation among the geographical populations. Analysis of molecular variance revealed that most of the genetic variation present was within geographical populations, with only 1.3% of the genetic variation among P. microcarpus geographical populations. This was particularly pronounced for four geographical populations within a ca 7,000 km2 area New South Wales, which were each separated by <100 km and appeared to be genetically homogeneous. The lack of population structure is suggested to be due to a high degree of gene flow, via basidiospores, between the New South Wales geographical populations.  相似文献   

13.
Aim The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post‐glacial history of this species during the Holocene. Location Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier’s algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species’ extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north–south along Honshu. Given that this tree species is cold‐adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher‐elevation swamps during warm post‐glacial periods, leading to a reduction of effective population sizes and rare allelic richness.  相似文献   

14.
Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531–281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in FST is explained by these models, with geographical distance and least‐cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high‐elevation environments.  相似文献   

15.
16.
Microstomum lineare is a common species of fresh and brackish waters found worldwide. Three genes (18S, CO1 and ITS) were sequenced from specimens of M. lineare collected from four countries, and the levels of cryptic diversity and genetic structuring were assessed. Results showed M. lineare has very wide haplotype distributions suggesting higher than expected dispersal capabilities. In addition, three new species were described on the basis of molecular taxonomy: Microstomum artoisi sp. nov., Microstomum tchaikovskyi sp. nov. and Microstomum zicklerorum sp. nov.  相似文献   

17.
To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high‐elevation populations developed cold hardiness earlier than low‐elevation populations, representing significant genetic control. Because development occurred earlier at high‐elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade‐off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high‐elevation population. These thermal responses may be one of the important factors driving the elevation‐dependent adaptation of A. sachalinensis.  相似文献   

18.
《Systematic Entomology》2018,43(1):200-217
Cold‐adapted species are expected to have reached their largest distribution range during a part of the Ice Ages whereas postglacial warming has led to their range contracting toward high‐latitude and high‐altitude areas. This has resulted in an extant allopatric distribution of populations and possibly to trait differentiations (selected or not) or even speciation. Assessing inter‐refugium differentiation or speciation remains challenging for such organisms because of sampling difficulties (several allopatric populations) and disagreements on species concept. In the present study, we assessed postglacial inter‐refugia differentiation and potential speciation among populations of one of the most common arcto‐alpine bumblebee species in European mountains, Bombus monticola Smith, 1849. Based on mitochondrial DNA/nuclear DNA markers and eco‐chemical traits, we performed integrative taxonomic analysis to evaluate alternative species delimitation hypotheses and to assess geographical differentiation between interglacial refugia and speciation in arcto‐alpine species. Our results show that trait differentiations occurred between most Southern European mountains (i.e. Alps, Balkan, Pyrenees, and Apennines) and Arctic regions. We suggest that the monticola complex actually includes three species: B. konradini   stat.n. status distributed in Italy (Central Apennine mountains), B. monticola with five subspecies, including B. monticola mathildis   ssp.n. distributed in the North Apennine mountains ; and B. lapponicus . Our results support the hypothesis that post‐Ice Age periods can lead to speciation in cold‐adapted species through distribution range contraction. We underline the importance of an integrative taxonomic approach for rigorous species delimitation, and for evolutionary study and conservation of taxonomically challenging taxa.  相似文献   

19.
We investigated the influence of differing life history traits on the genetic structure of the related species Mimetes fimbriifolius and Mimetes hirtus (Proteaceae), which occur in the South African fynbos. Both species are bird‐pollinated and ant‐dispersed, but differ in rarity, longevity, ecological strategy and the fragmentation of their distribution area. We used AFLPs to study genetic variation within and between 21 populations of these two species across their distribution range. AFLP analysis revealed significantly higher genetic variation within populations of M. fimbriifolius than within M. hirtus. While M. fimbriifolius clearly lacked any significant genetic differentiation between populations, a distinct geographic pattern was observed for M. hirtus. Differentiation was, however, stronger at the regional (ΦPT = 0.57) than at the local scale (ΦPT = 0.08). Our results clearly indicate that even closely related species that share the same mode of pollination and seed dispersal can differ in their genetic structure, depending on the magnitude of fragmentation, longevity of individuals and ecological strategy.  相似文献   

20.
Aim We investigated the geographical pattern of genetic divergence and demographic history in the prodoxid moth Greya obscura throughout its entire geographical range in far western North America and compared it to the geographical patterns found in a previously studied species, Greya politella, which co‐occurs over the same range, in the same habitats, and on the same host plants. Location The study included sites distributed throughout the California Floristic Province. Methods We used analysis of cytochrome c oxidase subunit I (COI) and amplified fragment length polymorphisms to evaluate the pattern and history of genetic continuity among populations. Results Greya obscura populations show a history of spatial expansion with considerable haplotype diversity in the centre of the geographical range. As with G. politella, some range‐edge populations of G. obscura are sufficiently divergent (6.7% in COI) to be considered as potentially cryptic species. Greya obscura and G. politella, however, differ in the specific range‐edge sites showing greatest genetic divergence and cryptic speciation. Main conclusions These results corroborate the view that range edges are important cradles of divergence and speciation. In addition, the results indicate that the geographical pattern of divergence at edges may differ even among closely related species occupying the same habitats and using the same hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号