首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA replication is a fundamental biological process that is tightly regulated in all cells. In bacteria, DnaA controls when and where replication begins by building a step‐wise complex that loads the replicative helicase onto chromosomal DNA. In many low‐GC Gram‐positive species, DnaA recruits the DnaD and DnaB proteins to function as adaptors to assist in helicase loading. How DnaA, its adaptors and the helicase form a complex at the origin is unclear. We addressed this question using the bacterial two‐hybrid assay to determine how the initiation proteins from Bacillus subtilis interact with each other. We show that cryptic interaction sites play a key role in this process and we map these regions for the entire pathway. In addition, we found that the SirA regulator that blocks initiation in sporulating cells binds to a surface on DnaA that overlaps with DnaD. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this surface. Therefore, our study has unveiled key protein interactions essential for initiation and our approach is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.  相似文献   

2.
DNA replication and chromosome segregation must be carefully regulated to ensure reproductive success. During Bacillus subtilis sporulation, chromosome copy number is reduced to two, and cells divide asymmetrically to produce the future spore (forespore) compartment. For successful sporulation, oriC must be captured in the forespore. New rounds of DNA replication are prevented in part by SirA, a protein that utilizes residues in its N‐terminus to directly target Domain I of the bacterial initiator, DnaA. Using a quantitative forespore chromosome organization assay, we show that SirA also acts in the same pathway as another DnaA regulator, Soj, to promote oriC capture in the forespore. By analyzing loss‐of‐function variants of both SirA and DnaA, we observe that SirA's ability to inhibit DNA replication can be genetically separated from its role in oriC capture. In addition, we identify substitutions near the C‐terminus of SirA and in DnaA Domain III that enhance interaction between the two proteins. One such variant, SirAP141T, remained functional in regard to inhibiting replication, but was unable to support oriC capture. Collectively, our results support a model in which SirA targets DnaA Domain I to inhibit DNA replication, and DnaA Domain III to facilitate Soj‐dependent oriC capture in the forespore.  相似文献   

3.
Bacteria regulate the frequency and timing of DNA replication initiation by controlling the activity of the replication initiator protein DnaA. SirA is a recently discovered regulator of DnaA in Bacillus subtilis whose synthesis is turned on at the start of sporulation. Here, we demonstrate that SirA contacts DnaA at a patch of 3 residues located on the surface of domain I of the replication initiator protein, corresponding to the binding site used by two unrelated regulators of DnaA found in other bacteria. We show that the interaction of SirA with domain I inhibits the ability of DnaA to bind to the origin of replication. DnaA mutants containing amino acid substitutions of the 3 residues are functional in replication initiation but are immune to inhibition by SirA.  相似文献   

4.
Replication of the bacterial chromosome is initiated by the binding of the DnaA protein to a unique DNA region, called oriC. Many regulatory factors in numerous species act by controlling the ability of DnaA to bind and unwind DNA, but the Helicobacter pylori genome does not contain homologues to any of these factors. Here, we describe HobA, a novel protein essential for initiation of H. pylori chromosome replication, which is conserved among, and unique to, epsilon proteobacteria. We demonstrate that HobA interacts specifically via DnaA with the oriC-DnaA complex. We postulate that HobA is essential for correct formation and stabilization of the orisome by facilitating the spatial positioning of DnaA at oriC. Consistent with its function, overexpression of hobA had no effect on growth of H. pylori, whereas depletion of HobA led to growth arrest and failure to initiate replication. In conclusion, HobA may be the first identified of a new group of initiation factors common to epsilon proteobacteria.  相似文献   

5.
In bacteria, initiation of DNA replication requires the DnaA protein. Regulation of DnaA association and activity at the origin of replication, oriC, is the predominant mechanism of replication initiation control. One key feature known to be generally important for replication is DNA topology. Although there have been some suggestions that topology may impact replication initiation, whether this mechanism regulates DnaA‐mediated replication initiation is unclear. We found that the essential topoisomerase, DNA gyrase, is required for both proper binding of DnaA to oriC as well as control of initiation frequency in Bacillus subtilis. Furthermore, we found that the regulatory activity of gyrase in initiation is specific to DnaA and oriC. Cells initiating replication from a DnaA‐independent origin, oriN, are largely resistant to gyrase inhibition by novobiocin, even at concentrations that compromise survival by up to four orders of magnitude in oriC cells. Furthermore, inhibition of gyrase does not impact initiation frequency in oriN cells. Additionally, deletion or overexpression of the DnaA regulator, YabA, significantly modulates sensitivity to gyrase inhibition, but only in oriC and not oriN cells. We propose that gyrase is a negative regulator of DnaA‐dependent replication initiation from oriC, and that this regulatory mechanism is required for cell survival.  相似文献   

6.
7.
How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a result, expression of SirA during growth rapidly blocks replication and causes cell death in a DnaA-dependent manner. Finally, cells lacking SirA over-replicate during sporulation. These results support a model in which induction of SirA enforces diploidy by inhibiting replication initiation as B. subtilis cells develop into spores.  相似文献   

8.
Shogo Ozaki  Tsutomu Katayama   《Plasmid》2009,62(2):71-82
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.  相似文献   

9.
10.
The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA–DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.  相似文献   

11.
Control of DNA replication initiation is essential for cell growth. A unifying characteristic of DNA replication initiator proteins is their distinctive AAA+ nucleotide‐binding domains. The bacterial initiator DnaA assembles into a right‐handed helical oligomer built upon interactions between neighbouring AAA+ domains to form an active initiation complex. Recently we developed a unique cross‐linking assay that specifically detects ATP‐dependent DnaA helix assembly. Here we have utilized this assay to show that two DnaA regulatory proteins in Bacillus subtilis, YabA and DnaD, inhibit DnaA helix formation. These results, in combination with our previous finding that the regulatory factor Soj/ParA also targets DnaA filament formation, highlight the critical importance of regulating DnaA helix formation during the initiation reaction. Moreover, these observations lead us to suggest that DnaA oligomerization may be the main regulatory step of the initiator assembly pathway in B. subtilis, in contrast to the prevailing model of bacterial DNA replication based on Escherichia coli DnaA where ATP binding appears to be the targeted activity.  相似文献   

12.
In prokaryotes, DNA replication is initiated by the binding of DnaA to the oriC region of the chromosome to load the primosome machinery and start a new replication round. Several proteins control these events in Escherichia coli to ensure that replication is precisely timed during the cell cycle. Here, we report the crystal structure of HobA (HP1230) at 1.7 A, a recently discovered protein that specifically interacts with DnaA protein from Helicobacter pylori (HpDnaA). We found that the closest structural homologue of HobA is a sugar isomerase (SIS) domain containing protein, the phosphoheptose isomerase from Pseudomonas aeruginosa. Remarkably, SIS proteins share strong sequence homology with DiaA from E. coli; yet, HobA and DiaA share no sequence homology. Thus, by solving the structure of HobA, we unexpectedly discovered that HobA is a H. pylori structural homologue of DiaA. By comparing the structure of HobA to a homology model of DiaA, we identified conserved, surface-accessible residues that could be involved in protein-protein interaction. Finally, we show that HobA specifically interacts with the N-terminal part of HpDnaA. The structural homology between DiaA and HobA strongly supports their involvement in the replication process and these proteins could define a new structural family of replication regulators in bacteria.  相似文献   

13.
Replication initiation of the broad host range plasmid RK2 requires binding of the host-encoded DnaA protein to specific sequences (DnaA boxes) at its replication origin (oriV). In contrast to a chromosomal replication origin, which functionally interacts only with the native DnaA protein of the organism, the ability of RK2 to replicate in a wide range of Gram-negative bacterial hosts requires the interaction of oriV with many different DnaA proteins. In this study we compared the interactions of oriV with five different DnaA proteins. DNase I footprint, gel mobility shift, and surface plasmon resonance analyses showed that the DnaA proteins from Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa bind to the DnaA boxes at oriV and are capable of inducing open complex formation, the first step in the replication initiation process. However, DnaA proteins from two Gram-positive bacteria, Bacillus subtilis and Streptomyces lividans, while capable of specifically interacting with the DnaA box sequences at oriV, do not bind stably and fail to induce open complex formation. These results suggest that the inability of the DnaA protein of a host bacterium to form a stable and functional complex with the DnaA boxes at oriV is a limiting step for plasmid host range.  相似文献   

14.
DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~ 15 Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication.  相似文献   

15.
Summary Heat shock proteins have been shown to be involved in many cellular processes in procaryotic and eucaryotic cells. Using an in vitro DNA replication assay, we show that DNA synthesis initiated at the chromosomal origin of replication of Escherichia coli (oriC) is considerably reduced in enzyme extracts isolated from cells bearing mutations in the dnaK and dnaJ genes, which code for heat shock proteins. Furthermore, unlike DNA synthesis in wild-type extracts, residual DNA synthesis in dnaK and dnaJ extracts is thermosensitive. Although thermosensitivity can be complemented by the addition of DnaK and DnaJ proteins, restoration of near wild-type replication levels requires supplementary quantities of purified DnaA protein. This key DNA synthesis initiator protein is shown to be adsorbed to DnaK affinity columns. These results suggest that at least one of the heat shock proteins, DnaK, exerts an effect on the initiation of DNA synthesis at the level of DnaA protein activity. However, our observation of normal oriC plasmid transformation ratios and concentrations in heat shock mutants at permissive temperatures would suggest that heat shock proteins play a role in DNA replication mainly at high temperatures or under other stressful growth conditions.  相似文献   

16.
The essential proteins DnaB, DnaD and DnaI of Bacillus subtilis are required for initiation, but not elongation, of DNA replication, and for replication restart at stalled forks. The interactions and functions of these proteins have largely been determined in vitro based on their roles in replication restart. During replication initiation in vivo, it is not known if these proteins, and the replication initiator DnaA, associate with oriC independently of each other by virtue of their DNA binding activities, as a (sub)complex like other loader proteins, or in a particular dependent order. We used temperature‐sensitive mutants or a conditional degradation system to inactivate each protein and test for association of the other proteins with oriC in vivo. We found that there was a clear order of stable association with oriC; DnaA, DnaD, DnaB, and finally DnaI‐mediated loading of helicase. The loading of helicase via stable intermediates resembles that of eukaryotes and the established hierarchy provides several potential regulatory points. The general approach described here can be used to analyse assembly of other complexes.  相似文献   

17.
Kato J  Katayama T 《The EMBO journal》2001,20(15):4253-4262
The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.  相似文献   

18.
Replication of the bacterial chromosome is initiated by binding the DnaA protein to oriC. Various factors control the ability of DnaA to bind and unwind DNA. Among them, Escherichia coli DiaA and Helicobacter pylori HobA have been characterized recently. They were found to interact with domain I of DnaA and stimulate DnaA binding to oriC. We examined HobA and DiaA functional homology and showed that, despite a high degree of structural similarity, they are not interchangeable because they are unable to interact with heterologous DnaA proteins. We revealed particular structural differences impeding formation of heterologous complexes and, consistently, we restored DiaA-enhanced oriC binding by the hybrid EcI-HpII-IVDnaA protein; i.e. H. pylori DnaA in which domain I was exchanged with that of E. coli. This proved that DiaA and HobA are functional homologs and upon binding to DnaA they exert a similar effect on orisome formation. Interestingly, we showed for the first time that the dynamics of DiaA- and HobA-stimulated orisome assembly are different. HobA enhances and accelerates HpDnaA binding to oriC, whereas DiaA increases but decelerates EcDnaA binding with oriC. We postulate that the different dynamics of orisome formation reflect the distinct strategies adopted by E. coli and H. pylori to regulate the frequency of the replication of their chromosomes. DiaA/HobA homolog have been identified in many proteobacteria and therefore might constitute a common, though species-specific, factor modulating bacterial orisome assembly.  相似文献   

19.
DnaA protein, the initiator for chromosomal DNA replication in Escherichia coli, has various activities, such as oligomerization (DnaA-DnaA interaction), ATP-binding, ATPase activity and membrane-binding. Site-directed mutational analyses have revealed not only the amino acid residues that are essential for these activities but also the functions of these activities. Following is a summary of the functions and regulatory mechanisms of DnaA protein in the initiation of chromosomal DNA replication. ATP-bound DnaA protein, but not other forms of the protein binds to the origin of DNA replication and forms oligomers to open-up the duplex DNA. This oligomerization is mediated by a DnaA-DnaA interaction through the N-terminal region of the protein. After initiation of DNA replication, the ATPase activity of DnaA protein is stimulated and DnaA protein is inactivated to the ADP-bound form to suppress the re-initiation of DNA replication. DnaA protein binds to acidic phospholipids through an ionic interaction between basic amino acid residues of the protein and acidic residues of phospholipids. This interaction seems to be involved in the re-activation of DnaA protein (from the ADP-bound form to the ATP-bound form) to initiate DNA replication after the appropriate interval.  相似文献   

20.
Escherichia coli ATP–DnaA initiates chromosomal replication. For preventing extra‐initiations, a complex of ADP–Hda and the DNA‐loaded replicase clamp promotes DnaA‐ATP hydrolysis, yielding inactive ADP–DnaA. However, the Hda–DnaA interaction mode remains unclear except that the Hda Box VII Arg finger (Arg‐153) and DnaA sensor II Arg‐334 within each AAA+ domain are crucial for the DnaA‐ATP hydrolysis. Here, we demonstrate that direct and functional interaction of ADP–Hda with DnaA requires the Hda residues Ser‐152, Phe‐118 and Asn‐122 as well as Hda Arg‐153 and DnaA Arg‐334. Structural analyses suggest intermolecular interactions between Hda Ser‐152 and DnaA Arg‐334 and between Hda Phe‐118 and the DnaA Walker B motif region, in addition to an intramolecular interaction between Hda Asn‐122 and Arg‐153. These interactions likely sustain a specific association of ADP–Hda and DnaA, promoting DnaA‐ATP hydrolysis. Consistently, ATP–DnaA and ADP–DnaA interact with the ADP–Hda‐DNA–clamp complex with similar affinities. Hda Phe‐118 and Asn‐122 are contained in the Box VI region, and their hydrophobic and electrostatic features are basically conserved in the corresponding residues of other AAA+ proteins, suggesting a conserved role for Box VI. These findings indicate novel interaction mechanisms for Hda–DnaA as well as a potentially fundamental mechanism in AAA+ protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号