首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snowy plovers (Charadrius nivosus) are a species of conservation concern throughout North America and listed as a threatened species in Kansas. Management to minimize the effects of flooding and predation were implemented at Kansas breeding sites in the 1980s to encourage reproductive success. However, the effectiveness of those strategies and the effect of other variables that may influence nest survival have not been formally assessed. We used Program MARK to model the daily survival rate (DSR) of 317 snowy plover nests with 14 habitat- and management-related covariates to identify factors that influence nest survival and examine the efficacy of current management practices. In 2005 and 2006, we monitored nests and collected habitat data at the 2 known breeding sites in Kansas, Quivira National Wildlife Refuge (NWR) and Cheyenne Bottoms Wildlife Area (WA). Overall DSR was greater at Quivira NWR in 2006 (0.954) than at Cheyenne Bottoms WA (0.917) and Quivira NWR (0.942) in 2005. We developed 88 candidate models of which 4 competing models (ΔAICc < 2) were identified. We selected the most parsimonious model (K = 14, wi = 0.23) as the remaining 3 included covariates deemed biologically uninformative. This model included the effect of study site and year on a quadratic time trend, and included covariates quantifying nest age; precipitation; the proportion of gravel, rock, and vegetation at nests; occurrence within an electric fence and within 20 m of a road; occurrence on a human-constructed nest mound; and adult capture during incubation. We found a strong positive relationship between the use of nest mounds and DSR, and a strong negative relationship between precipitation and DSR. We also found a strong positive relationship between DSR and the proportion of vegetation at nest sites, the occurrence of a nest within an electric fence, and adult capture at a nest. We noted a strong negative relationship between DSR and occurrence within 20 m of a road. However, we found that DSR was not sensitive to the proportion of vegetation at a nest, occurrence within an electric fence or within 20 m of a road, and to adult capture at a nest in light of covariates quantifying precipitation and the use of nest mounds. We found weak support for a positive relationship between DSR, nest age, and the proportion of gravel and rock at nests. Our results indicate that large rainfall events are a major source of snowy plover nest loss in Kansas that can be mitigated by the construction of nest mounds. Limited influence of environmental variables found to influence nest survival at other breeding sites suggests that threats to snowy plover nest survival are site specific and managers should assess local sources of nest loss prior to implementing management strategies to improve reproductive success. © 2012 The Wildlife Society.  相似文献   

2.
ABSTRACT Habitat quality, as indexed by the reproductive success of individuals, can greatly influence population growth, especially for rare species near the limits of their range. Along the Pacific coast, the Snowy Plover (Charadrius alexandrinus nivosus) is a threatened species that, in recent years, has been breeding on both riverine gravel bars and ocean beaches in northern California. From 2001 to 2009, we compared the habitat characteristics, breeding phenology, reproductive success, and abundance of Western Snowy Plovers occupying these two habitats. Similar percentages of yearling and adult plovers returned to gravel bars and beaches, but plovers breeding on gravel bars arrived and initiated first clutches 2–3 weeks later than those breeding on beaches. Despite this delay, however, the mean annual fledging success of plovers on gravel bars (1.4 ± 0.4 [SD]) was double that on beaches (0.7 ± 0.3). Differences in cumulative reproductive success produced a stronger pattern. By their sixth year, males on gravel bars had fledged 14.5 ± 2.1 chicks, more than four times the number of young fledged by males on beaches (3.3 ± 3.1). Over 9 years, local population size decreased by about 75%, coincident with a shift in breeding distribution away from high‐quality gravel bars to ocean beaches. This unexpected population decline and shift to poorer quality beaches may have been related to occasional low survival of plovers that over‐winter exclusively on beaches in our study area. Consistently low productivity of plovers breeding on ocean beaches suggests the need for intensified management to ameliorate the negative impacts of predation and human activity on the recovery of this population.  相似文献   

3.
Numerous amphibian species are at risk of extinction worldwide. Therefore, reliable estimations of the distribution and abundance of these species are necessary for their conservation. Generally, amphibians are difficult to detect in the wild, which compromises the accuracy of long-term population monitoring and management. Occupancy models are useful tools to assess how environmental variables, at a local and at a landscape scale, affect the distribution and abundance of organisms taking into account species imperfect detectability. In this study, we evaluated with an environmental multiscale approach the seasonal variation of the occupation area of the threatened salamander, Ambystoma ordinarium along its distribution range. We obtained readings in 60 streams of physicochemical variables associated with habitat quality and landscape features. We found that detection and occupation probability of A. ordinarium are seasonally associated with different environmental variables. During the dry season, detectability was positively associated with temperature and stream depth, whereas occupancy was positively associated with the proportion of crops in the landscape and stream elevation. In the rainy season, the detection probability was not explained by any variable considered, and occupancy was negatively associated with stream's electrical conductivity and dissolved oxygen. Based on the estimation of occupied sites, we showed that A. ordinarium presents a more restricted distribution range than previously projected. Therefore, our results reveal the importance of evaluating the accuracy of distribution estimates for the conservation of threatened species as A. ordinarium.  相似文献   

4.
Sea‐level rise (SLR) is a projected consequence of global climate change that will result in complex changes in coastal ecosystems. These changes will cause transitions among coastal habitat types, which will be compounded by human‐made barriers to the gradual inland migration of these habitat types. The effect of these changes on the future viability of coastal species will depend on the habitat requirements and population dynamics of these species. Thus, realistic assessments of the impact of SLR require linking geomorphological models with habitat and population models. In this study, we implemented a framework that allows this linkage, and demonstrated its feasibility to assess the effect of SLR on the viability of the Snowy Plover population in Florida. The results indicate that SLR will cause a decline in suitable habitat and carrying capacity for this species, and an increase in the risk of its extinction and decline. The model projected that the population size will decline faster than the area of habitat or carrying capacity, demonstrating the necessity of incorporating population dynamics in assessing the impacts of SLR on coastal species. The results were most sensitive to uncertainties in survival rate and fecundity, and suggested that future studies on this species should focus on the average and variability of these demographic rates and their dependence on population density. The effect of SLR on this species’ viability was qualitatively similar with most alternative models that used the extreme values of each uncertain parameter, indicating that the results are robust to uncertainties in the model.  相似文献   

5.
6.
Aim Land use intensity has been recognized as one of the major determinants of native species declines. The re‐expansion of species previously constrained by habitat degradation has been rarely investigated. Here, we use site occupancy models incorporating imperfect detection to identify the land use drivers of the re‐expansion of the Eurasian otter (Lutra lutra). Location Czech Republic. Methods We applied multi‐season occupancy models to otter presence–non‐detection data collected in three national surveys (1992, 2000, 2006) at 552 sites (11.2 × 12 km grid cells). Model parameters included site occupancy, colonization and extinction probabilities, and detection probability at a sub‐site level. We modelled changes in occupancy over time as a function of agricultural, urban and industrial land use and change in the extent of agricultural land use. Results Under the best fitting model, occupancy was estimated to be 34.6% in 1992, 51.3% in 2000 and 83.7% in 2006. Detection probability was neither perfect nor constant. Occupancy probability in 1992 was negatively related to land use gradients. Colonization was more likely to occur where a reduction in agricultural land was larger. Variation in extinction and colonization rates along land use gradients resulted in increased occupancy in industrial and especially urban landscapes. Conversely, occupancy remained almost unchanged along agricultural gradients. Main conclusions Dynamics of otter expansion were strongly associated with the two main patterns of the rapid environmental transition that has taken place in the Czech Republic since the early 1990s. Results show that a reduction in intensive agricultural land use led to an increase in otter distribution, providing evidence of the impact of agricultural land use on stream ecosystems. Moreover, otters recolonized urban and industrial landscapes, probably as a result of extensive reduction in water pollution from point sources. Our results suggest that active conservation of otter populations should focus on restoration of freshwater habitat at large scales, especially in agricultural landscapes.  相似文献   

7.
Amphibian reproductive biology and activity are highly sensitive to environmental cues. For amphibian conservation in the face of climate change, a clear priority is to investigate impacts of variable weather on breeding activity and detectability. This study assessed variation in the phenology, intensity and detectability of calling for a threatened temporary wetland breeding species, Litoria olongburensis. Acoustic and visual surveys were conducted monthly from August 2009 to July 2011 over the species latitudinal range in eastern Australia. Calling phenology of L. olongburensis varied spatially and temporally within and among latitudinal clusters. Detectability of frogs also varied among months and transects, and also with the type of survey conducted (visual vs. acoustic). Air temperature was a strong predictor for the onset of the calling season (early spring); however, peaks in calling abundances were primarily driven by monthly accumulated rainfall. The duration of the calling season varied among latitudinal clusters, becoming narrower moving south, reflecting clinal variation in weather patterns. This study presents a framework for amphibian species management using a combination of survey techniques and the climatic conditions influencing detectability. Applied along the latitudinal gradient, it provides data for predicting the likely impacts of climate change on amphibian activity and reproduction.  相似文献   

8.
Aim Assessments of biodiversity are an essential requirement of conservation management planning. Species distributional modelling is a popular approach to quantifying biodiversity whereby occurrence data are related to environmental covariates. An important confounding factor that is often overlooked in the development of such models is uncertainty due to imperfect detection. Here, I demonstrate how an analytical approach that accounts for the bias due to imperfect detection can be applied retrospectively to an existing biodiversity survey data set to produce more realistic estimates of species distributions and unbiased covariate relationships. Location Pilbara biogeographic region, Australia. Methods As a component of the Pilbara survey, presence/absence (i.e. undetected) data on small ground‐dwelling mammals were collected. I applied a multiseason occupancy modelling approach to six of the most common species encountered during this survey. Detection and occupancy rates, as well as extinction and colonization probabilities, were determined, and the influence of covariates on these parameters was examined using the multi‐model inference approach. Results Detection probabilities for all six species were considerably lower than 1.0 and varied across time and species. Naïve estimates of occupancy underestimated occupancy rates corrected for species detectability by up to 45%. Seasonal variation in occupancy status was attributed to changes in detection for two of the focal species, while reproductive events explained variation in occupancy in three others. Covariates describing the substrate strongly influenced site occupancy for most of the species modelled. A comparison of the occupancy model with a generalized linear model, assuming perfect detection, showed that the effects of the covariates were underestimated in the latter model. Main conclusions The application of the multiseason occupancy modelling approach to the Pilbara mammal data set demonstrated a powerful framework for examining changes in site occupancy, as well as local colonization and extinction rates of species which are not confounded by variable species detection rates.  相似文献   

9.
Predicting how populations respond to climate change requires an understanding of whether individuals or cohorts within populations vary in their response to climate variation. We used mixed-effects models on a song sparrow (Melospiza melodia) population in British Columbia, Canada, to examine differences among females and cohorts in their average breeding date and breeding date plasticity in response to the El Niño Southern Oscillation. Climatic variables, age and population density were strong predictors of timing of breeding, but we also found considerable variation among individual females and cohorts. Within cohorts, females differed markedly in their breeding date and cohorts also differed in their average breeding date and breeding date plasticity. The plasticity of a cohort appeared to be due primarily to an interaction between the environmental conditions (climate and density) experienced at different ages rather than innate inter-cohort differences. Cohorts that expressed higher plasticity in breeding date experienced warmer El Niño springs in their second or third breeding season, suggesting that prior experience affects how well individuals responded to abnormal climatic conditions. Cohorts born into lower density populations also expressed higher plasticity in breeding date. Interactions between age, experience and environmental conditions have been reported previously for long-lived taxa. Our current results indicate that similar effects operate in a short-lived, temperate songbird.  相似文献   

10.
The suitability of marsh sites for sea-level studies was examined based on a field study along a transect from high to low marsh. Living foraminifera at Bombay Hook (Delaware, USA) are considered to be shallow infaunal (i.e., uppermost 10 cm). Peak concentrations were found at 1–10 cm in the high marsh, 1–5 cm in the intermediate marsh, and 3–5 cm in the low marsh. However, sporadic deep infaunal inputs in the low marsh could significantly contribute to the sub-fossil assemblage. In the upper 10 cm buried (death + sub-fossil) and living assemblages showed a strong correlation, and the seasonal pattern of the buried assemblage paralleled the living one, suggesting that the buried assemblage reflected the most recent reproductive inputs. The cumulative standing crop of each dominant species was used to estimate their contribution to the buried assemblage in order to assess if the community is vertically homogeneous and, therefore, if the infaunal production causes differential sub-surface enrichment. The results showed that a “shallow” (0–5 cm) infaunal contribution is able to explain much of the sub-fossil assemblage beneath the surface in the high and intermediate marsh plots. However, in the low marsh plot, the deep infaunal contribution was greatest and significantly affected the sub-fossil assemblage. Therefore, modern analogues for sea-level studies in mid-Atlantic North American marshes should include the uppermost 5 cm. The interval proposed for the high and intermediate marsh is thin enough that epifaunal species are not underrepresented and encompasses only ~8 years (based on burial rates) providing a high temporal resolution. Handling editor: J. Saros  相似文献   

11.
Red‐naped sapsuckers (Sphyrapicus nuchalis) are functionally important because they create sapwells and cavities that other species use for food and nesting. Red‐naped sapsucker ecology within aspen (Populus tremuloides) has been well studied, but relatively little is known about red‐naped sapsuckers in conifer forests. We used light detection and ranging (LiDAR) data to examine occupancy patterns of red‐naped sapsuckers in a conifer‐dominated system. We surveyed for sapsuckers at 162 sites in northern Idaho, USA, during 2009 and 2010. We used occupancy models and an information‐theoretic approach to model sapsucker occupancy as a function of four LiDAR‐based metrics that characterized vegetation structure and tree harvest, and one non‐LiDAR metric that characterized distance to major roads. We evaluated model support across a range of territory sizes using Akaike's information criterion. Top model support was highest at the 4‐ha extent, which suggested that 4 ha was the most relevant scale describing sapsucker occupancy. Sapsuckers were positively associated with variation of canopy height and harvested area, and negatively associated with shrub and large tree density. These results suggest that harvest regimes and structural diversity of vegetation at moderate extents (e.g., 4 ha) largely influence occurrence of red‐naped sapsuckers in conifer forests. Given the current and projected declines of aspen populations, it will be increasingly important to assess habitat relationships, as well as demographic characteristics, of aspen‐associated species such as red‐naped sapsuckers within conifer‐dominated systems to meet future management and conservation goals.  相似文献   

12.
13.
Abstract

The Demoiselle Crane is one of the rarest bird species of Turkey. 20–30 pairs breed at a few sites in Eastern Anatolia. In contrast to the major part of its ranges, it is confined to wetlands. Compared to Cyprus, the number of migrants is relatively low, which might be explained by a low observation activity during migration seasons.  相似文献   

14.
On a population level, individual plasticity in reproductive phenology can provoke either anticipations or delays in the average reproductive timing in response to environmental changes. However, a rigid reliance on photoperiodism can constraint such plastic responses in populations inhabiting temperate latitudes. The regulation of breeding season length may represent a further tool for populations facing changing environments. Nonetheless, this skill was reported only for equatorial, nonphotoperiodic populations. Our goal was to evaluate whether species living in temperate regions and relying on photoperiodism to trigger their reproduction may also be able to regulate breeding season length. During 10 years, we collected 2,500 female reproductive traits of a mammal model species (wild boar Sus scrofa) and applied a novel analytical approach to reproductive patterns in order to observe population-level variations of reproductive timing and synchrony under different weather and resources availability conditions. Under favorable conditions, breeding seasons were anticipated and population synchrony increased (i.e., shorter breeding seasons). Conversely, poor conditions induced delayed and less synchronous (i.e., longer) breeding seasons. The potential to regulate breeding season length depending on environmental conditions may entail a high resilience of the population reproductive patterns against environmental changes, as highlighted by the fact that almost all mature females were reproductive every year.  相似文献   

15.
Logan BR  Klein JP  Zhang MJ 《Biometrics》2008,64(3):733-740
Summary .   In some clinical studies comparing treatments in terms of their survival curves, researchers may anticipate that the survival curves will cross at some point, leading to interest in a long-term survival comparison. However, simple comparison of the survival curves at a fixed point may be inefficient, and use of a weighted log-rank test may be overly sensitive to early differences in survival. We formulate the problem as one of testing for differences in survival curves after a prespecified time point, and propose a variety of techniques for testing this hypothesis. We study these methods using simulation and illustrate them on a study comparing survival for autologous and allogeneic bone marrow transplants.  相似文献   

16.
The Grey-necked Picathartes Picathartes oreas is a globally threatened bird species in Africa with a wild population of less than 10,000 individuals. The Nigerian population, which has been poorly studied, is restricted to the forest of Cross River. This study re-assessed the distribution, breeding population, habitat use and current threats of the Grey-necked Picathartes by revisiting the 91 breeding sites identified during the first and only survey of the species in 1987. We estimated a breeding population of 164 individuals across 82 breeding sites. Only 72 breeding sites were found in the localities where 91 had been registered in 1987. Thirteen (18%) of these 72 sites were no longer active and showed evidence of human disturbance. The occurrence of Grey-necked Picathartes’ nest sites was positively predicted by higher number of emergent trees, larger rocks and negatively related to disturbance matrices. Similarly, larger colony sizes were associated with high canopy cover and rock height. Also, the probability of finding an active nest within a breeding colony was significantly predicted by increased canopy, tree density and ground cover. Human threats included farming, wire snares, egg and juvenile removal, bush burning, and hunter’s camps. These threats, though specific to the Grey-necked Picathartes, threaten the integrity of the Cross River forest habitats.  相似文献   

17.
18.
The longhorn beetle, Cerambyx welensii Küster (Coleoptera: Cerambycidae), is an emerging pest involved in oak decline episodes in dehesa open woodlands. Larvae are xylophagous and cause considerable physiological, mechanical, and structural damages to trees. Chemical and biological control are currently unsatisfactory. Recent research has shown that mass trapping with a high density of baited traps (40 traps ha?1) could be useful to manage C. welensii populations, although such a trap density was too high to be cost‐effective. In this 2‐year study (2010–2011) we investigated with mark–recapture methods in a large plot (1) the flight dispersal behaviour, (2) the adult population density, and (3) the efficiency of mass trapping at two low trap densities (one or four traps ha?1). Results indicated that many adults were sedentary (60%) but flying adults displayed a strong propensity to move, both sexes dispersing on average more than 200 m and one male and one female flying at least 540 and 349 m, respectively. Recapture rates were high (0.26–0.35) and population density was estimated to be 6–22 adults ha?1 with maximum likelihood models. Trapping efficiency ranged 48–61% with no significant effect of trap density or year. We conclude that results were not satisfactory enough to recommend mass trapping with low trap densities as control method for C. welensii and that more research is still required on the technical, ecological, and behavioural factors affecting control efficiency.  相似文献   

19.
Abstract

A new population of terrestrial Leiopel‐matid frog was discovered in the Whareorino Forest, northern King Country, New Zealand, in 1991. Searches were carried out from June 1991 to December 1993 to determine the species present and to document variation in external morphology, habitat, and local distribution. These confirmed that a terrestrial frog resembling L. archeyi is present in the area, as well as Hochstetter's frog Leiopelma hochstetteri and the introduced Australian hylid frog Litoria aurea.

In Whareorino Forest, the terrestrial Leiopelma was mostly above 500 m altitude and L. hochstetteri above 350 m. The terrestrial Leiopelma occupies sites under rocks and logs in forest. It also occurs in vegetation, such as crown fern Blechnum discolor, tree fern Cyathea smithii, hook grass Uncinia uncinata, and rice grass Microlaena avenacea. Egg clusters of this frog were found in crown fern and tree fern, as well as under stones.

The terrestrial Leiopelma is susceptible to predation by Litoria aurea and rats. This is the first documented evidence of predation on Leiopelma on the New Zealand mainland. The future of this small remnant Leiopelma population is uncertain, and further investigation of the impact of anuran and mammalian predators is needed.  相似文献   

20.
Making an inference on the absence of a species in a site is often problematic, due to detection probability being, in most cases, <1. Inference is more complicated if detection probability, together with distribution patterns, vary during the year, since the possibility of inferring a species absence, at reasonable costs, may be possible only in certain periods. Our aim here is to show how such challenging situations can be by tackled by applying some recently developed occupancy models combined with sample size (number of repeated surveys) estimation. We thus analysed the distribution of two rodents Myodes glareolus and Mus musculus domesticus in a fragmented landscape in central Italy pointing out how it is possible to identify true absences, non-detections, extinctions/colonizations and determine seasonal values of detection probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号