首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep,that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3-H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53's functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53D mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins, and growth of a rad53-FHA mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a "nucleosome buffer," interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.  相似文献   

2.
Checkpoints are cellular surveillance and signaling pathways that regulate responses to DNA damage and perturbations of DNA replication. Here we show that high levels of sumoylated Rad52 are present in the mec1 sml1 and rad53 sml1 checkpoint mutants exposed to DNA-damaging agents such as methyl methanesulfonate (MMS) or the DNA replication inhibitor hydroxyurea (HU). The kinase-defective mutant rad53-K227A also showed high levels of Rad52 sumoylation. Elevated levels of Rad52 sumoylation occur in checkpoint mutants proceeding S phase being exposed DNA-damaging agent. Interestingly, chromatin immunoprecipitation (ChIP) on chip analyses revealed non-canonical chromosomal localization of Rad52 in the HU-treated rad53-K227A cells arrested in early S phase: Rad52 localization at dormant and early DNA replication origins. However, such unusual localization was not dependent on the sumoylation of Rad52. In addition, we also found that Rad52 could be highly sumoylated in the absence of Rad51. Double mutation of RAD51 and RAD53 exhibited the similar levels of Rad52 sumoylation to RAD53 single mutation. The significance and regulation mechanism of Rad52 sumoylation by checkpoint pathways will be discussed.  相似文献   

3.
Calcium (Ca2+) is an important ion that is necessary for the activation of different DNA repair mechanisms. However, the mechanism by which DNA repair and Ca2+ homeostasis cooperate remains unclear. We undertook a systems biology approach to verify the relationship between proteins associated with Ca2+ homeostasis and DNA repair for Saccharomyces cerevisiae. Our data indicate that Pmr1p, a Ca2+ transporter of Golgi complex, interacts with Cod1p, which regulates Ca2+ levels in the endoplasmic reticulum (ER), and with Rad4p, which is a nucleotide excision repair (NER) protein. This information was used to construct single and double mutants defective for Pmr1p, Cod1p, and Rad4p followed by cytotoxic, cytostatic, and cell cycle arrest analyses after cell exposure to different concentrations of 4-nitroquinoline 1-oxide (4-NQO). The results indicated that cod1Δ, cod1Δrad4Δ, and cod1Δpmr1Δ strains have an elevated sensitivity to 4-NQO when compared to its wild-type (WT) strain. Moreover, both cod1Δpmr1Δ and cod1Δrad4Δ strains have a strong arrest at G2/M phases of cell cycle after 4-NQO treatment, while pmr1Δrad4Δ have a similar sensitivity and cell cycle arrest profile when compared to rad4Δ after 4-NQO exposure. Taken together, our results indicate that deletion in Golgi- and ER-associated Ca2+ transporters affect the repair of 4-NQO-induced DNA damage.  相似文献   

4.
Rad6p plays important roles in post-replication DNA repair, chromatin organization, gene silencing and meiosis. In this study, we show that Rad6p also regulates yeast-hypha morphogenesis in the human pathogen Candida albicans. CaRAD6 gene and cDNAs were isolated and characterized revealing that the gene carries two 5'-proximal introns. CaRad6p shows a high degree of sequence similarity to Rad6 proteins from fungi to man (60-83% identity), and it suppresses the UV sensitivity and lack of induced mutagenesis displayed by a Saccharomyces cerevisiae rad6 mutant. In C. albicans, CaRAD6 expression is induced in response to UV, and CaRad6p depletion confers UV sensitivity, confirming that Rad6p serves a role in protecting this fungus against UV damage. CaRAD6 overexpression inhibits hyphal development, whereas CaRad6p depletion enhances hyphal growth. Also, CaRAD6 mRNA levels decrease during the yeast-hypha transition. These effects are dependent on Efg1p, but not Cph1p, indicating that CaRad6p acts specifically through the Efg1p morphogenetic signalling pathway to repress yeast-hypha morphogenesis.  相似文献   

5.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

6.
The Mec1 and Rad53 protein kinases are essential for budding yeast cell viability and are also required to activate the S-phase checkpoint, which supports DNA replication under stress conditions. Whether these two functions are related to each other remains to be determined, and the nature of the replication stress-dependent lethality of mec1 and rad53 mutants is still unclear. We show here that a decrease in cyclin-dependent kinase 1 (Cdk1) activity alleviates the lethal effects of mec1 and rad53 mutations both in the absence and in the presence of replication stress, indicating that the execution of a certain Cdk1-mediated event(s) is detrimental in the absence of Mec1 and Rad53. This lethality involves Cdk1 functions in both G1 and mitosis. In fact, delaying either the G1/S transition or spindle elongation in mec1 and rad53 mutants allows their survival both after exposure to hydroxyurea and under unperturbed conditions. Altogether, our studies indicate that inappropriate entry into S phase and segregation of incompletely replicated chromosomes contribute to cell death when the S-phase checkpoint is not functional. Moreover, these findings suggest that the essential function of Mec1 and Rad53 is not necessarily separated from the function of these kinases in supporting DNA synthesis under stress conditions.  相似文献   

7.
Checkpoint response, tolerance and repair are three major pathways that eukaryotic cells evolved independently to maintain genome stability and integrity. Here, we studied the sensitivity to DNA damage in checkpoint-deficient budding yeast cells and found that checkpoint kinases Mec1 and Rad53 may modulate the balance between error-free and error-prone branches of the tolerance pathway. We have consistently observed that mutation of the RAD53 counterbalances error-free and error-prone branches upon exposure of cells to DNA damage induced either by MMS alkylation or by UV-radiation. We have also found that the potential Mec1/Rad53 balance modulation is independent from Rad6/Rad18-mediated PCNA ubiquitylation, as mec1Δ or rad53Δ mutants show no defects in the modification of the sliding clamp, therefore, we infer that it is likely exerted by acting on TLS polymerases and/or template switching targets.  相似文献   

8.
Yoshida J  Umezu K  Maki H 《Genetics》2003,164(1):31-46
In previous studies of the loss of heterozygosity (LOH), we analyzed a hemizygous URA3 marker on chromosome III in S. cerevisiae and showed that homologous recombination is involved in processes that lead to LOH in multiple ways, including allelic recombination, chromosome size alterations, and chromosome loss. To investigate the role of homologous recombination more precisely, we examined LOH events in rad50 Delta, rad51 Delta, rad52 Delta, rad50 Delta rad52 Delta, and rad51 Delta rad52 Delta mutants. As compared to Rad(+) cells, the frequency of LOH was significantly increased in all mutants, and most events were chromosome loss. Other LOH events were differentially affected in each mutant: the frequencies of all types of recombination were decreased in rad52 mutants and enhanced in rad50 mutants. The rad51 mutation increased the frequency of ectopic but not allelic recombination. Both the rad52 and rad51 mutations increased the frequency of intragenic point mutations approximately 25-fold, suggesting that alternative mutagenic pathways partially substitute for homologous recombination. Overall, these results indicate that all of the genes are required for chromosome maintenance and that they most likely function in homologous recombination between sister chromatids. In contrast, other recombination pathways can occur at a substantial level even in the absence of one of the genes and contribute to generating various chromosome rearrangements.  相似文献   

9.
Background information. In budding yeast, the loss of either telomere sequences (in telomerase‐negative cells) or telomere capping (in mutants of two telomere end‐protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. Results. We report that in telomerase‐negative (tlc1Δ) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end‐protection proteins (cdc131 yku70Δ). In telomerase‐negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA‐damage‐induced cell‐cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53–Mrc1 complex in tlc1Δ rad9Δ cells, Mrc1 did not mediate the cell‐cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. Conclusions. These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53–Rad9‐mediated cell‐cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53–Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.  相似文献   

10.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep, that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3–H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53''s functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53Δ mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins and growth of this mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a “nucleosome buffer”, interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.Key words: DNA replication, Rad53, histones, checkpoint, origins of replication  相似文献   

11.
Loss of heterozygosity (LOH) of tumor suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Understanding how LOH events arise may provide an opportunity for the prevention or early intervention of cancer development. In an effort to investigate the source of LOH events, we constructed MATalphacan1Delta::LEU2 and MATa CAN1 haploid yeast strains and examined canavanine-resistance mutations in a MATa CAN1/MATalphacan1Delta::LEU2 heterozygote formed by mating UV-irradiated and nonirradiated haploids. An increase in LOH was observed when the irradiated CAN1 haploid was mated with nonirradiated can1Delta::LEU2, while reversed irradiation only marginally increased LOH. In the rad51Delta background, allelic crossover type LOH increased following UV irradiation but not gene conversion. In the rad52Delta background, neither type of LOH increased. The chromosome structure following LOH and the requirement for Rad51 and Rad52 proteins indicated the involvement of gene conversion, allelic crossover and break-induced replication. We argued that LOH events could have occurred during the repair of double-strand breaks on a functional (damaged) but not nonfunctional (undamaged) chromosome through recombination.  相似文献   

12.
13.
Deletion of DNA polymerase eta (Rad30/Polη) in pathogenic yeast Candida albicans is known to reduce filamentation induced by serum, ultraviolet, and cisplatin. Because nonfilamentous C. albicans is widely accepted as avirulent form, here we explored the virulence and pathogenicity of a rad30Δ strain of C. albicans in cell‐based and animal systems. Flow cytometry of cocultured fungal and differentiated macrophage cells revealed that comparatively higher percentage of macrophages was associated with the wild‐type than rad30Δ cells. In contrast, higher number of Polη‐deficient C. albicans adhered per macrophage membrane. Imaging flow cytometry showed that the wild‐type C. albicans developed hyphae after phagocytosis that caused necrotic death of macrophages to evade their clearance. Conversely, phagosomes kill the fungal cells as estimated by increased metacaspase activity in wild‐type C. albicans. Despite the morphological differences, both wild‐type and rad30? C. albicans were virulent with a varying degree of pathogenicity in mice models. Notably, mice with Th1 immunity were comparatively less susceptible to systemic fungal infection than Th2 type. Thus, our study clearly suggests that the modes of interaction of morphologically different C. albicans strains with the host immune cells are diverged, and host genetic background and several other attributing factors of the fungus could additionally determine their virulence.  相似文献   

14.
Activation of Rad53p by DNA damage plays an essential role in DNA damage checkpoint pathways. Rad53p activation requires coupling of Rad53p to Mec1p through a “mediator” protein, Rad9p or Mrc1p. We sought to determine whether the mediator requirement could be circumvented by making fusion proteins between the Mec1 binding partner Ddc2p and Rad53p. Ddc2-Rad53p interacted with Mec1p and other Ddc2-Rad53p molecules under basal conditions and displayed an increased oligomerization upon DNA damage. Ddc2-Rad53p was activated in a Mec1p- and Tel1p-dependent manner upon DNA damage. Expression of Ddc2-Rad53p in Δrad9 or Δrad9Δmrc1 cells increased viability on plates containing the alkylating agent methyl methane sulfonate. Ddc2-Rad53p was activated at least partially by DNA damage in Δrad9Δmrc1 cells. In addition, expression of Ddc2-Rad53p in Δrad24Δrad17Δmec3 cells increased cell survival. These results reveal minimal requirements for function of a core checkpoint signaling system.  相似文献   

15.
RAD52 is required for almost all recombination events in Saccharomyces cerevisiae. We took advantage of the heterozygosity of HIS4 in the Candida albicans SC5314 lineage to study the role of Rad52 in the genomic stability of this important fungal pathogen. The rate of loss of heterozygosity (LOH) at HIS4 in rad52-ΔΔ strains was ~10(-3) , at least 100-fold higher than in Rad52(+) strains. LOH of whole chromosome 4 or truncation of the homologue that carries the functional HIS4 allele was detected in all 80 rad52-ΔΔ His auxotrophs (GLH -GL lab His(-)) obtained from six independent experiments. Isolates that had undergone whole chromosome LOH, presumably due to loss of chromosome, carried two copies of the remaining homologue. Isolates with truncations carried centric fragments of broken chromosomes healed by de novo telomere addition. GLH strains exhibited variable degrees of LOH across the genome, including two strains that became homozygous for all the heterozygous markers tested. In addition, GLH strains exhibited increased chromosomal instability (CIN), which was abolished by reintroduction of RAD52. CIN of GLH isolates is reminiscent of genomic alterations leading to cancer in human cells, and support the mutator hypothesis in which a mutator mutation or CIN phenotype facilitate more mutations/aneuploidies.  相似文献   

16.
Gunjan A  Verreault A 《Cell》2003,115(5):537-549
Rad53 and Mec1 are protein kinases required for DNA replication and recovery from DNA damage in Saccharomyces cerevisiae. Here, we show that rad53, but not mec1 mutants, are extremely sensitive to histone overexpression, as Rad53 is required for degradation of excess histones. Consequently, excess histones accumulate in rad53 mutants, resulting in slow growth, DNA damage sensitivity, and chromosome loss phenotypes that are significantly suppressed by a reduction in histone gene dosage. Rad53 monitors excess histones by associating with them in a dynamic complex that is modulated by its kinase activity. Our results argue that Rad53 contributes to genome stability independently of Mec1 by preventing the damaging effects of excess histones both during normal cell cycle progression and in response to DNA damage.  相似文献   

17.
Chromosomal rearrangements are common in both clinical isolates and spontaneous mutants of Candida albicans. It appears that many of these rearrangements are caused by translocations around the major sequence repeat (MSR) that is present in all chromosomes except chromosome 3, suggesting that homologous recombination (HR) may play an important role in the survival of this organism. In order to gain information on these processes, we have cloned the homologue of RAD52, which in Saccharomyces cerevisiae is the only gene required for all HR events. CaRAD52 complemented poorly a rad52 mutant of S. cerevisiae. Two null Carad52Delta/Carad52Delta mutants were constructed by sequential deletion of both alleles and two reconstituted strains were obtained by reintegration of the gene. Characterization of these mutants indicated that HR plays an essential role in the repair of DNA lesions caused by both UV light and the radiomimetic compound methyl-methane-sulphonate (MMS), whereas the non-homologous end-joining pathway (NHEJ) is used only in the absence of Rad52p or after extensive DNA damage. Repair by HR is more efficient in exponentially growing than in stationary cells, probably because a larger number of cells are in late S or G2 phases of the cell cycle (and therefore, can use a sister chromatid as a substrate for recombinational repair), whereas stationary phase cells are mainly in G0 or G1, and only can be repaired using the chromosomal homologue. In addition, CaRad52p is absolutely required for the integration of linear DNA with long flanking homologous sequences. Finally, the absence of CaRad52p results in the lengthening of telomeres, even in the presence of an active telomerase, an observation not described in any other organism. This raises the possibility that both telomerase and homologous recombination may function simultaneously at C. albicans telomeres.  相似文献   

18.
Tel1/ATM and Mec1/ATR checkpoint kinases are activated by DNA double‐strand breaks (DSBs). Mec1/ATR recruitment to DSBs requires the formation of RPA‐coated single‐stranded DNA (ssDNA), which arises from 5′–3′ nucleolytic degradation (resection) of DNA ends. Here, we show that Saccharomyces cerevisiae Mec1 regulates resection of the DSB ends. The lack of Mec1 accelerates resection and reduces the loading to DSBs of the checkpoint protein Rad9, which is known to inhibit ssDNA generation. Extensive resection is instead inhibited by the Mec1‐ad mutant variant that increases the recruitment near the DSB of Rad9, which in turn blocks DSB resection by both Rad53‐dependent and Rad53‐independent mechanisms. The mec1‐ad resection defect leads to prolonged persistence at DSBs of the MRX complex that causes unscheduled Tel1 activation, which in turn impairs checkpoint switch off. Thus, Mec1 regulates the generation of ssDNA at DSBs, and this control is important to coordinate Mec1 and Tel1 signaling activities at these breaks.  相似文献   

19.
In response to DNA replication stress in Saccharomyces cerevisiae, the DNA replication checkpoint maintains replication fork stability, prevents precocious chromosome segregation, and causes cells to arrest as large-budded cells. The checkpoint kinases Mec1 and Rad53 act in this checkpoint. Treatment of mec1 or rad53Delta mutants with replication inhibitors results in replication fork collapse and inappropriate partitioning of partially replicated chromosomes, leading to cell death. We describe a previously unappreciated function of various replication stress checkpoint proteins, including Rad53, in the control of cell morphology. Checkpoint mutants have aberrant cell morphology and cell walls, and show defective bud site selection. Rad53 shows genetic interactions with septin ring pathway components, and, along with other checkpoint proteins, controls the timely degradation of Swe1 during replication stress, thereby facilitating proper bud growth. Thus, checkpoint proteins play an important role in coordinating morphogenetic events with DNA replication during replication stress.  相似文献   

20.
The Rad51 paralogs Rad55 and Rad57 form a heterodimer required to mediate the formation and/or stabilization of the Rad51 filament. To further characterize the function of Rad55-Rad57, we used a combination of rad57 partial suppressors to determine whether the DNA repair and recombination defects of the rad57 mutant could be completely suppressed. The combination of all suppressors, elevated temperature, srs2, rad51-I345T, and mating-type (MAT) heterozygosity resulted in almost complete suppression of the rad57 mutant defect in the recruitment of Rad51 to DNA-damaged sites, as well as survival in response to ionizing radiation and camptothecin. In a physical assay to monitor the kinetics of double-strand-break (DSB)-induced gene conversion, the rad57 mutant defect was effectively suppressed by srs2 and MAT heterozygosity, but these same suppressors failed to suppress the spontaneous recombination defect. Thus the Rad55-Rad57 heterodimer appears to have a unique function in spontaneous recombination that is not essential for DSB repair. Furthermore, we investigated the currently unknown mechanism of rad57 suppression by MAT heterozygosity and found that it is independent of DNL4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号