首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose‐6‐phosphate dehydrogenase, the rate‐limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time‐ and dose‐dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes.

  相似文献   


2.
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2‐knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2‐knockout mice were significantly lower than those in wild‐type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons.

  相似文献   


3.
Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS‐linked UBQLN2 mutation on endoplasmic reticulum‐associated protein degradation (ERAD). Compared to its wild‐type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α‐1‐antitrypsin, although ERAD was disturbed by both UBQLN2 over‐expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain‐containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell‐protective function is disturbed by pathogenic mutation of UBQLN2.

  相似文献   


4.
Inflammation is a key part of central nervous system pathophysiology. However, inflammatory factors are now thought to have both beneficial and deleterious effects. Here, we examine the hypothesis that lipocalin‐2 (LCN2), an inflammatory molecule that can be up‐regulated in the distressed central nervous system, may enhance angiogenesis in brain endothelial cells. Adding LCN2 (0.5–2.0 μg/mL) to RBE (Rat brain endothelial cells). 4 rat brain endothelial cells significantly increased matrigel tube formation and scratch migration, and also elevated levels of iron and reactive oxygen species. Co‐treatment with a radical scavenger (U83836E), a Nox inhibitor (apocynin) and an iron chelating agent (deferiprone) significantly dampened the ability of LCN2 to enhance tube formation and scratch migration in brain endothelial cells. These findings provide in vitro proof of the concept that LCN2 can promote angiogenesis via iron‐ and reactive oxygen species‐related pathways, and support the idea that LCN2 may contribute to the neurovascular recovery aspects of inflammation.

  相似文献   


5.
Ca2+‐independent phospholipase A2 (iPLA2) is hypothesized to control mitochondrial reactive oxygen species (ROS) generation. Here, we modulated the influence of iPLA2‐induced liberation of non‐esterified free fatty acids on ROS generation associated with the electron transport chain. We demonstrate enzymatic activity of membrane‐associated iPLA2 in native, energized rat brain mitochondria (RBM). Theoretically, enhanced liberation of free fatty acids by iPLA2 modulates mitochondrial ROS generation, either attenuating the reversed electron transport (RET) or deregulating the forward electron transport of electron transport chain. For mimicking such conditions, we probed the effect of docosahexaenoic acid (DHA), a major iPLA2 product on ROS generation. We demonstrate that the adenine nucleotide translocase partly mediates DHA‐induced uncoupling, and that low micromolar DHA concentrations diminish RET‐dependent ROS generation. Uncoupling proteins have no effect, but the adenine nucleotide translocase inhibitor carboxyatractyloside attenuates DHA‐linked uncoupling effect on RET‐dependent ROS generation. Under physiological conditions of forward electron transport, low micromolar DHA stimulates ROS generation. Finally, exposure of RBM to the iPLA2 inhibitor bromoenol lactone (BEL) enhanced ROS generation. BEL diminished RBM glutathione content. BEL‐treated RBM exhibits reduced Ca2+ retention capacity and partial depolarization. Thus, we rebut the view that iPLA2 attenuates oxidative stress in brain mitochondria. However, the iPLA2 inhibitor BEL has detrimental activities on energy‐dependent mitochondrial functions.

  相似文献   


6.
The function of amyloid precursor protein (APP) is unknown, although the discovery that it contributes to the regulation of surface expression of N‐methyl‐d ‐aspartate (NMDA) receptors has afforded new insights into its functional significance. Since APP is a member of a gene family that contains two other members, amyloid precursor‐like proteins 1 and 2 (APLP1 and APLP2), it is important to determine if the related APP proteins possess the same properties as APP with respect to their interactions with NMDA receptors. Following expression in mammalian cells, both APLP1 and APLP2 behaved similarly to APP in that they both co‐immunoprecipitated with the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B, via interaction with the obligatory GluN1 subunit. Immunoprecipitations from detergent extracts of adult mammalian brain showed co‐immunoprecipitation of APLP1 and APLP2 with GluN2A‐ and GluN2B‐containing NMDA receptors. Furthermore, similarly to APP, APLP1 and APLP2 both enhanced GluN1/GluN2A and GluN1/GluN2B cell surface expression. Thus, all the three members of the APP gene family behave similarly in that they each contribute to the regulation of cell surface NMDA receptor homoeostasis.

  相似文献   


7.
Chronic glial activation and neuroinflammation induced by the amyloid‐β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD‐genetic risk factor; increasing risk up to 12‐fold compared to APOE3, with APOE4‐specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ‐induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell‐specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ‐independent neuroinflammation, data for APOE‐modulated Aβ‐induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ‐induced effects on inflammatory receptor signaling, including amplification of detrimental (toll‐like receptor 4‐p38α) and suppression of beneficial (IL‐4R‐nuclear receptor) pathways. To ultimately develop APOE genotype‐specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE‐modulated chronic neuroinflammation.

  相似文献   


8.
The E3 ubiquitin ligase Parkin plays a central role in the pathogenesis of many neurodegenerative diseases. Parkin promotes specific ubiquitination and affects the localization of transactivation response DNA‐binding protein 43 (TDP‐43), which controls the translation of thousands of mRNAs. Here we tested the effects of lentiviral Parkin and TDP‐43 expression on amino acid metabolism in the rat motor cortex using high frequency 13C NMR spectroscopy. TDP‐43 expression increased glutamate levels, decreased the levels of other amino acids, including glutamine, aspartate, leucine and isoleucine, and impaired mitochondrial tricarboxylic acid cycle. TDP‐43 induced lactate accumulation and altered the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters. Parkin restored amino acid levels, neurotransmitter balance and tricarboxylic acid cycle metabolism, rescuing neurons from TDP‐43‐induced apoptotic death. Furthermore, TDP‐43 expression led to an increase in 4E‐BP levels, perhaps altering translational control and deregulating amino acid synthesis; while Parkin reversed the effects of TDP‐43 on the 4E‐BP signaling pathway. Taken together, these data suggest that Parkin may affect TDP‐43 localization and mitigate its effects on 4E‐BP signaling and loss of amino acid homeostasis.

  相似文献   


9.
The synthesis of inositol provides precursors of inositol lipids and inositol phosphates that are pivotal for cell signaling. Mood stabilizers lithium and valproic acid, used for treating bipolar disorder, cause cellular inositol depletion, which has been proposed as a therapeutic mechanism of action of both drugs. Despite the importance of inositol, the requirement for inositol synthesis in neuronal cells is not well understood. Here, we examined inositol effects on proliferation of SK‐N‐SH neuroblastoma cells. The essential role of inositol synthesis in proliferation is underscored by the findings that exogenous inositol was dispensable for proliferation, and inhibition of inositol synthesis decreased proliferation. Interestingly, the inhibition of inositol synthesis by knocking down INO1, which encodes inositol‐3‐phosphate synthase, the rate‐limiting enzyme of inositol synthesis, led to the inactivation of GSK‐3α by increasing the inhibitory phosphorylation of this kinase. Similarly, the mood stabilizer valproic acid effected transient decreases in intracellular inositol, leading to inactivation of GSK‐3α. As GSK‐3 inhibition has been proposed as a likely therapeutic mechanism of action, the finding that inhibition of inositol synthesis results in the inactivation of GSK‐3α suggests a unifying hypothesis for mechanism of mood‐stabilizing drugs.

  相似文献   


10.
A set of specific precursor microRNAs (pre‐miRNAs) are reported to localize into neuronal dendrites, where they could be processed locally to control synaptic protein synthesis and plasticity. However, it is not clear whether specific pre‐miRNAs are also transported into distal axons to autonomously regulate intra‐axonal protein synthesis. Here, we show that a subset of pre‐miRNAs, whose mature miRNAs are enriched in axonal compartment of sympathetic neurons, are present in axons of neurons both in vivo and in vitro by quantitative PCR and by in situ hybridization. Some pre‐miRNAs (let 7c‐a and pre‐miRs‐16, 23a, 25, 125b‐1, 433, and 541) showed elevated axonal levels, while others (pre‐miRs‐138‐2, 185, and 221) were decreased in axonal levels following injury. Dicer and KSRP proteins are also present in distal axons, but Drosha is found restricted to the cell body. These findings suggest that specific pre‐miRNAs are selected for localization into distal axons of sensory neurons and are presumably processed to mature miRNAs in response to extracellular stimuli. This study supports the notion that local miRNA biogenesis effectively provides another level of temporal control for local protein synthesis in axons.

  相似文献   


11.
In vitro and in vivo studies have suggested that reduced astrocytic uptake of neuronally released glutamate, alterations in expression of glial fibrillary acidic protein (GFAP) and aquaporin‐4 (AQP‐4) contribute to brain edema in acute liver failure (ALF). However, there is no evidence to date to suggest that these alterations occur in patients with ALF. We analyzed the mRNA expression of excitatory amino acid transporters (EAAT‐1, EAAT‐2), GFAP, and AQP‐4 in the cerebral cortex obtained at autopsy from eight patients with ALF and from seven patients with no evidence of hepatic or neurological disorders by real‐time PCR, and protein expression was assessed using immunoblotting and immunohistochemistry. We demonstrated a significant decrease in GFAP mRNA and protein levels in ALF patients compared to controls. While the loss of EAAT‐2 protein in ALF samples was post‐translational in nature, EAAT‐1 protein remained within normal limits. Immunohistochemistry confirmed that, in all cases, the losses of EAAT‐2 and GFAP were uniquely astrocytic in their localization. AQP‐4 mRNA expression was significantly increased and its immunohistochemistry demonstrated increased AQP‐4 immunoreactivity in the glial end‐feet process surrounding the microvessels. These findings provide evidence of selective alterations in the expression of genes coding for key astrocytic proteins implicated in central nervous system (CNS) excitability and brain edema in human ALF.

  相似文献   


12.
Compelling evidence indicates that type 2 diabetes mellitus, insulin resistance (IR), and metabolic syndrome are often accompanied by cognitive impairment. However, the mechanistic link between these metabolic abnormalities and CNS dysfunction requires further investigations. Here, we evaluated whether adipose tissue IR and related metabolic alterations resulted in CNS changes by studying synapse lipid composition and function in the adipocyte‐specific ecto‐nucleotide pyrophosphate phosphodiesterase over‐expressing transgenic (AtENPP1‐Tg) mouse, a model characterized by white adipocyte IR, systemic IR, and ectopic fat deposition. When fed a high‐fat diet, AtENPP1‐Tg mice recapitulate essential features of the human metabolic syndrome, making them an ideal model to characterize peripherally induced CNS deficits. Using a combination of gas chromatography and western blot analysis, we found evidence of altered lipid composition, including decreased phospholipids and increased triglycerides (TG) and free fatty acid in hippocampal synaptosomes isolated from high‐fat diet‐fed AtENPP1‐Tg mice. These changes were associated with impaired basal synaptic transmission at the Schaffer collaterals to hippocampal cornu ammonis 1 (CA1) synapses, decreased phosphorylation of the GluN1 glutamate receptor subunit, down‐regulation of insulin receptor expression, and up‐regulation of the free fatty acid receptor 1.

  相似文献   


13.
Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of nigrostriatal dopaminergic neurons and consequent motor dysfunction. Zonisamide (1,2‐benzisoxazole‐3‐methanesulfonamide), which was originally developed as an antiepileptic drug, has been found to have therapeutic benefits for PD. However, the pharmacological mechanisms behind the beneficial actions of zonisamide in PD are not fully understood. Here, we investigated the neuroprotective effects of zonisamide on nigrostriatal dopaminergic neurons of the Engrailed mutant mouse, a genetic model of PD. Chronic administration of zonisamide in Engrailed mutant mice was shown to improve the survival of nigrostriatal dopaminergic neurons compared with that under saline treatment. In addition, dopaminergic terminals in the striatum and the motor function were improved in zonisamide‐treated Engrailed mutant mice to the levels of those in control mice. To clarify the mechanism behind the neuroprotective effects of zonisamide, the contents of neurotrophic factors were determined after chronic administration of zonisamide. Brain‐derived neurotrophic factor content was increased in the striatum and ventral midbrain of the zonisamide‐treated mice compared to saline‐treated mice. These findings imply that zonisamide reduces nigrostriatal dopaminergic cell death through brain‐derived neurotrophic factor signaling and may have similar beneficial effects in human parkinsonian patients as well.

  相似文献   


14.
New neurons generated in the ventricular‐subventricular zone in the post‐natal brain travel toward the olfactory bulb by using a collective cell migration process called ‘chain migration.’ These new neurons show a saltatory movement of their soma, suggesting that each neuron cycles through periods of ‘rest’ during migration. Here, we investigated the role of the resting neurons in chain migration using post‐natal mouse brain, and found that they undergo a dynamic morphological change, in which a deep indentation forms in the cell body. Inhibition of Rac1 activity resulted in less indentation of the new neurons in vivo. Live cell imaging using a Förster resonance energy transfer biosensor revealed that Rac1 was activated at the sites of contact between actively migrating and resting new neurons. On the cell surface of resting neurons, Rac1 activation coincided with the formation of the indentation. Furthermore, Rac1 knockdown prevented the indentation from forming and impaired migration along the resting neurons. These results suggest that Rac1 regulates a morphological change in the resting neurons, which allows them to serve as a migratory scaffold, and thereby non‐cell‐autonomously promotes chain migration.

  相似文献   


15.
Alcohol exposure affects neuronal plasticity in the adult and developing brain. Astrocytes play a major role in modulating neuronal plasticity and are a target of ethanol. Tissue plasminogen activator (tPA) is involved in modulating neuronal plasticity by degrading the extracellular matrix proteins including fibronectin and laminin and is up‐regulated by ethanol in vivo. In this study we explored the hypothesis that ethanol affects DNA methylation in astrocytes thereby increasing expression and release of tPA. It was found that ethanol increased tPA mRNA levels, an effect mimicked by an inhibitor of DNA methyltransferase (DNMT) activity. Ethanol also increased tPA protein expression and release, and inhibited DNMT activity with a corresponding decrease in DNA methylation levels of the tPA promoter. Furthermore, it was observed that protein levels of DNMT3A, but not DNMT1, were reduced in astrocytes after ethanol exposure. These novel studies show that ethanol inhibits DNA methylation in astrocytes leading to increased tPA expression and release; this effect may be involved in astrocyte‐mediated inhibition of neuronal plasticity by alcohol.

  相似文献   


16.
17.
Benefits on cognition from docosahexaenoic acid (DHA, 22 : 6 n‐3) intake are absent in humans carrying apolipoprotein E ε4 allele (APOE4), the most important genetic risk factor for Alzheimer's disease (AD). To test the hypothesis that carrying APOE4 impairs DHA distribution, we evaluated plasma and brain fatty acid profiles and uptake of [14C]‐DHA using in situ cerebral perfusion through the blood–brain barrier in 4‐ and 13‐month‐old male and female APOE‐targeted replacement mice (APOE2, APOE3, and APOE4), fed with a DHA‐depleted diet. Cortical and plasma DHA were 9% lower and 34% higher in APOE4 compared to APOE2 mice, respectively. Brain uptake of [14C]‐DHA was 24% lower in APOE4 versus APOE2 mice. A significant relationship was established between DHA and apoE concentrations in the cortex of mice (r2 = 0.21) and AD patients (r2 = 0.32). Altogether, our results suggest that lower brain uptake of DHA in APOE4 than in APOE2 mice may limit the accumulation of DHA in cerebral tissues. These data provide a mechanistic explanation for the lack of benefit of DHA in APOE4 carriers on cognitive function and the risk of AD.

  相似文献   


18.
19.
The functional roles of the orphan nuclear receptor, Nurr1, have been extensively studied and well established in the development and survival of midbrain dopamine neurons. As Nurr1 and other NR4A members are widely expressed in the brain in overlapping and distinct manners, it has been an open question whether Nurr1 has important function(s) in other brain areas. Recent studies suggest that up‐regulation of Nurr1 expression is critical for cognitive functions and/or long‐term memory in forebrain areas including hippocampal formation. Questions remain about the association between Nurr1 expression and Alzheimer's disease (AD) brain pathology. Here, using our newly developed Nurr1‐selective antibody, we report that Nurr1 protein is prominently expressed in brain areas with Aβ accumulation, that is, the subiculum and the frontal cortex, in the 5XFAD mouse and that Nurr1 is highly co‐expressed with Aβ at early stages. Furthermore, the number of Nurr1‐expressing cells significantly declines in the 5XFAD mouse in an age‐dependent manner, accompanied by increased plaque deposition. Thus, our findings suggest that altered expression of Nurr1 is associated with AD progression.

  相似文献   


20.
Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5‐HT) system to decrease odorant cue [alarm substance (AS)]‐evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5‐HT system as well as to determine the involvement of the 5‐HT receptor subtypes in AS‐evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5‐HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS‐evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (< 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5‐HT1 and 5‐HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (< 0.001). From this, we conclude that Kiss1 modulates AS‐evoked fear responses mediated by the 5‐HT1A and 5‐HT2 receptors.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号