首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic diguanylate (c‐di‐GMP) is a second messenger implicated in the regulation of various cellular properties in several bacterial species. However, its function in phytopathogenic bacteria is not yet understood. In this study we investigated a panel of GGDEF/EAL domain proteins which have the potential to regulate c‐di‐GMP levels in the phytopathogen Dickeya dadantii 3937. Two proteins, EcpB (contains GGDEF and EAL domains) and EcpC (contains an EAL domain) were shown to regulate multiple cellular behaviours and virulence gene expression. Deletion of ecpB and/or ecpC enhanced biofilm formation but repressed swimming/swarming motility. In addition, the ecpB and ecpC mutants displayed a significant reduction in pectate lyase production, a virulence factor of this bacterium. Gene expression analysis showed that deletion of ecpB and ecpC significantly reduced expression of the type III secretion system (T3SS) and its virulence effector proteins. Expression of the T3SS genes is regulated by HrpL and possibly RpoN, two alternative sigma factors. In vitro biochemical assays showed that EcpC has phosphodiesterase activity to hydrolyse c‐di‐GMP into linear pGpG. Most of the enterobacterial pathogens encode at least one T3SS, a major virulence factor which functions to subvert host defences. The current study broadens our understanding of the interplay between c‐di‐GMP, RpoN and T3SS and the potential role of c‐di‐GMP in T3SS regulation among a wide range of bacterial pathogens.  相似文献   

2.
A bifunctional alcohol/acetaldehyde dehydrogenase (AdhE) gene (adhE) was cloned from Leuconostoc mesenteroides C7 (LMC7), which is the dominant lactic acid bacterium produced during heterofermentation of kimchi. The nucleotide sequence of the DNA fragment containing putative adhE, which is 2685 bp long and encodes an 886 amino acid polypeptide, exhibits 99% homology with Leu. mesenteroides sp. cremoris. The deduced AdhE comprises two conserved domains: alcohol dehydrogenase (Adh) and acetaldehyde dehydrogenase (Aldh). Moreover, two NAD-binding sites were observed, based on the presence of the GXGXXG motif. A pADHE containing the adhE gene expressed AdhE at the translational level in Escherichia coli BL21, which was at a higher level than in E. coli DH5 and E. coli JM109. The AdhE of LMC7 showed Adh and Aldh activities that, when expressed in E. coli. BL21, were 7.5 and 5.7 U mg-1 , respectively.  相似文献   

3.
A major and critical virulence determinant of many Gram‐negative bacterial pathogens is the Type III Secretion Systems (T3SS). T3SS3 in Burkholderia pseudomallei is critical for bacterial virulence in mammalian infection models but its regulation is unknown. B. pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and northern Australia. While screening for bacterial transposon mutants with a defective T3SS function, we discovered a TetR family regulator (bspR) responsible for the control of T3SS3 gene expression. The bspR mutant exhibited significant virulence attenuation in mice. BspR acts through BprP, a novel transmembrane regulator located adjacent to the currently delineated T3SS3 region. BprP in turn regulates the expression of structural and secretion components of T3SS3 and the AraC family regulator bsaN. BsaN and BicA likely form a complex to regulate the expression of T3SS3 effectors and other regulators which in turn affect the expression of Type VI Secretion Systems (T6SS). The complete delineation of the bspR initiated T3SS regulatory cascade not only contributes to the understanding of B. pseudomallei pathogenesis but also provides an important example of how bacterial pathogens could co‐opt and integrate various regulatory motifs to form a new regulatory network adapted for its own purposes.  相似文献   

4.
Protein secretion systems are critical to bacterial virulence and interactions with other organisms. The Type VI secretion system (T6SS) is found in many bacterial species and is used to target either eukaryotic cells or competitor bacteria. However, T6SS‐secreted proteins have proven surprisingly elusive. Here, we identified two secreted substrates of the antibacterial T6SS from the opportunistic human pathogen, Serratia marcescens. Ssp1 and Ssp2, both encoded within the T6SS gene cluster, were confirmed as antibacterial toxins delivered by the T6SS. Four related proteins encoded around the Ssp proteins (‘Rap’ proteins) included two specifically conferring self‐resistance (‘immunity’) against T6SS‐dependent Ssp1 or Ssp2 toxicity. Biochemical characterization revealed specific, tight binding between cognate Ssp–Rap pairs, forming complexes of 2:2 stoichiometry. The atomic structures of two Rap proteins were solved, revealing a novel helical fold, dependent on a structural disulphide bond, a structural feature consistent with their functional localization. Homologues of the Serratia Ssp and Rap proteins are found encoded together within other T6SS gene clusters, thus they represent founder members of new families of T6SS‐secreted and cognate immunity proteins. We suggest that Ssp proteins are the original substrates of the S. marcescens T6SS, before horizontal acquisition of other T6SS‐secreted toxins. Molecular insight has been provided into how pathogens utilize antibacterial T6SSs to overcome competitors and succeed in polymicrobial niches.  相似文献   

5.
Type VI protein secretion systems (T6SS) are essential for virulence of several Gram‐negative bacteria. In this study, we identified a T6SS in Vibrio anguillarum, a marine bacterium that causes a hemorrhagic septicemia in fish. A partial operon vtsA‐H (v ibrio t ype s ix secretion) was sequenced and shown to encode eight proteins. VtsE‐H are signature proteins found in other T6SSs, while VtsA‐D are not associated with T6SS studied so far. In‐frame deletions were made in each gene. Secretion of a haemolysin‐co‐regulated‐like protein (Hcp), a protein secreted by all studied T6SSs, was decreased in VtsE‐H. Unexpectedly, VtsA, VtsC and VtsD activated while VtsB and VtsE‐H repressed hcp expression. The T6SS proteins also regulated expression of two extracellular proteases, EmpA and PrtV, but inversely to Hcp expression. This regulation was indirect as T6S positively regulated expression of the stress‐response regulator RpoS and the quorum‐sensing regulator VanT, which positively regulate protease expression. Moreover, VtsA‐H proteins were not needed for virulence but did play a role in various stress responses. Thus, these data characterize a new role for T6S in the ecology of bacteria and we hypothesize this role to be a signal sensing mechanism that modulates the expression of regulators of the general stress response.  相似文献   

6.
7.
8.
植物青枯病是一种能造成巨大经济损失的土传病害,其病原茄科劳尔氏菌复合体(Ralstonia solanacearum species complex,RSSC)能通过复杂的毒力调控网络将毒力因子合成并分泌到植物细胞胞质间或细胞质内,从而引起寄主植物发病。本文详细分析了RSSC主要的毒力基因及调控网络,包括其运动性(鞭毛,菌毛)、细菌分泌系统(T2SS、T3SS以及T6SS)、毒力调控系统(Phc、Prh、Vsr、Peh、Sol)、毒力因子(CWDEs、T3Es、EPS)、群体信号因子AHL及植物激素,总结了近年来最新的研究进展并绘制了相关网络调控模式图,以期为进一步研究RSSC的致病机理及防控研究提供参考。  相似文献   

9.
10.
Soft‐rot diseases of plants attributed to Dickeya dadantii result from lysis of the plant cell wall caused by pectic enzymes released by the bacterial cell by a type II secretion system (T2SS). Arabidopsis thaliana can express several lines of defence against this bacterium. We employed bacterial mutants with defective envelope structures or secreted proteins to examine early plant defence reactions. We focused on the production of AtrbohD‐dependent reactive oxygen species (ROS), callose deposition and cell death as indicators of these reactions. We observed a significant reduction in ROS and callose formation with a bacterial mutant in which genes encoding five pectate lyases (Pels) were disrupted. Treatment of plant leaves with bacterial culture filtrates containing Pels resulted in ROS and callose production, and both reactions were dependent on a functional AtrbohD gene. ROS and callose were produced in response to treatment with a cellular fraction of a T2SS‐negative mutant grown in a Pels‐inducing medium. Finally, ROS and callose were produced in leaves treated with purified Pels that had also been shown to induce the expression of jasmonic acid‐dependent defence genes. Pel catalytic activity is required for the induction of ROS accumulation. In contrast, cell death observed in leaves infected with the wild‐type strain appeared to be independent of a functional AtrbohD gene. It was also independent of the bacterial production of pectic enzymes and the type III secretion system (T3SS). In conclusion, the work presented here shows that D. dadantii is recognized by the A. thaliana innate immune system through the action of pectic enzymes secreted by bacteria at the site of infection. This recognition leads to AtrbohD‐dependent ROS and callose accumulation, but not cell death.  相似文献   

11.
In the environment, bacteria show close association, such as interspecies interaction, with other bacteria as well as host organisms. The type VI secretion system (T6SS) in gram-negative bacteria is involved in bacterial competition or virulence. The plant pathogen Burkholderia glumae BGR1, causing bacterial panicle blight in rice, has four T6SS gene clusters. The presence of at least one T6SS gene cluster in an organism indicates its distinct role, like in the bacterial and eukaryotic cell targeting system. In this study, deletion mutants targeting four tssD genes, which encode the main component of T6SS needle formation, were constructed to functionally dissect the four T6SSs in B. glumae BGR1. We found that both T6SS group_4 and group_5, belonging to the eukaryotic targeting system, act independently as bacterial virulence factors toward host plants. In contrast, T6SS group_1 is involved in bacterial competition by exerting antibacterial effects. The ΔtssD1 mutant lost the antibacterial effect of T6SS group_1. The ΔtssD1 mutant showed similar virulence as the wild-type BGR1 in rice because the ΔtssD1 mutant, like the wild-type BGR1, still has key virulence factors such as toxin production towards rice. However, metagenomic analysis showed different bacterial communities in rice infected with the ΔtssD1 mutant compared to wild-type BGR1. In particular, the T6SS group_1 controls endophytic plant-associated bacteria such as Luteibacter and Dyella in rice plants and may have an advantage in competing with endophytic plant-associated bacteria for settlement inside rice plants in the environment. Thus, B. glumae BGR1 causes disease using T6SSs with functionally distinct roles.  相似文献   

12.
Zheng J  Ho B  Mekalanos JJ 《PloS one》2011,6(8):e23876
A type VI secretion system (T6SS) was recently shown to be required for full virulence of Vibrio cholerae O37 serogroup strain V52. In this study, we systematically mutagenized each individual gene in T6SS locus and characterized their functions based on expression and secretion of the hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum and killing of Escherichia coli bacterial cells. We group the 17 proteins characterized in the T6SS locus into four categories: twelve (VipA, VipB, VCA0109-VCA0115, ClpV, VCA0119, and VasK) are essential for Hcp secretion and bacterial virulence, and thus likely function as structural components of the apparatus; two (VasH and VCA0122) are regulators that are required for T6SS gene expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are unknown; the last group is represented by VCA0118, which is not required for Hcp expression or secretion but still plays a role in both amoebae and bacterial killing and may therefore be an effector protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is less important for killing E. coli. In addition, one vgrG gene (vgrG-2) outside of the T6SS gene cluster was required for bacterial killing but another (vgrG-1) was not. However, a bacterial killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into the functional requirements of V. cholerae's T6SS in the context of secretion as well as killing of bacterial and eukaryotic phagocytic cells.  相似文献   

13.
Prevotella melaninogenica is a gram‐negative anaerobic commensal bacterium that resides in the human oral cavity and is isolated as a pathogen of suppurative diseases both inside and outside the mouth. However, little is known about the pathogenic factors of P. melaninogenica. The periodontal pathogens Porphyromonas gingivalis and Tanerella forsythia secrete virulence factors such as protease and bacterial cell surface proteins via a type IX secretion system (T9SS) that are involved in pathogenicity. P. melaninogenica also possesses all known orthologs of T9SS. In this study, a P. melaninogenica GAI 07411 mutant deficient in the orthologue of the T9SS‐encoding gene, porK, was constructed. Hemagglutination and biofilm formation were decreased in the porK mutant. Furthermore, following growth on skim milk‐containing medium, the diameters of the halos surrounding the porK mutant were smaller than those of the wild‐type strain, suggesting a decrease in secretion of proteases outside the bacterium. To investigate this in detail, culture supernatants of wild‐type and porK mutant strains were purified and compared by two‐dimensional electrophoresis. In the mutant strain, fewer spots were detected, indicating fewer secreted proteins. In infection experiments, the mortality rate of mice inoculated with the porK mutant strain was significantly lower than in the wild‐type strain. These results suggest that P. melaninogenica secretes potent virulence factors via the T9SS that contribute to its pathogenic ability.
  相似文献   

14.
Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols.  相似文献   

15.
Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.  相似文献   

16.
17.
18.
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post‐harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall‐degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild‐type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild‐type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild‐type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI‐inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild‐type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down‐regulated in the mutant compared with the wild‐type strain.  相似文献   

19.
20.
Virulence factor regulator (Vfr) is a member of the cyclic 3′,5′‐adenosine monophosphate (cAMP) receptor proteins that regulate the expression of many important virulence genes in Pseudomonas aeruginosa. The role of Vfr in pathogenicity has not been elucidated fully in phytopathogenic bacteria. To investigate the function of Vfr in Pseudomonas syringae pv. tabaci 6605, the vfr gene was disrupted. The virulence of the vfr mutant towards host tobacco plants was attenuated significantly, and the intracellular cAMP level was decreased. The vfr mutant reduced the expression of flagella‐, pili‐ and type III secretion system‐related genes and the defence response in nonhost Arabidopsis leaves. Furthermore, the expression levels of achromobactin‐related genes and the iron uptake ability were decreased, suggesting that Vfr regulates positively these virulence‐related genes. In contrast, the vfr mutant showed higher tolerance to antimicrobial compounds as a result of the enhanced expression of the resistance–nodulation–division family members, the mexA, mexB and oprM genes. We further demonstrated that the mutant strains of vfr and cyaA, an adenylate cyclase gene responsible for cAMP synthesis, showed a similar phenotype, suggesting that Vfr regulates virulence factors in a cAMP‐dependent manner. Because there was no significant difference in the production of acylhomoserine lactone (AHL) quorum sensing molecules in the wild‐type, vfr and cyaA mutant strains, Vfr might control important virulence factors by an AHL‐independent mechanism in an early stage of infection by this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号