首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Traumatic brain injury (TBI) provokes primary and secondary damage on endothelium and brain parenchyma, leading neurons die rapidly by necrosis. The mammalian target of rapamycin signalling pathway (mTOR) manages numerous aspects of cellular growth, and it is up-regulated after moderate to severe traumatic brain injury (TBI). Currently, the significance of this increased signalling event for the recovery of brain function is unclear; therefore, we used two different selective inhibitors of mTOR activity to discover the functional role of mTOR inhibition in a mouse model of TBI performed by a controlled cortical impact injury (CCI). Treatment with KU0063794, a dual mTORC1 and mTORC2 inhibitor, and with rapamycin as well-known inhibitor of mTOR, was performed 1 and 4 hours subsequent to TBI. Results proved that mTOR inhibitors, especially KU0063794, significantly improved cognitive and motor recovery after TBI, reducing lesion volumes. Also, treatment with mTOR inhibitors ameliorated the neuroinflammation associated with TBI, showing a diminished neuronal death and astrogliosis after trauma. Our findings propose that the involvement of selective mTORC1/2 inhibitor may represent a therapeutic strategy to improve recovery after brain trauma.  相似文献   

4.
Excessive astrogliosis is a major impediment to axonal regeneration in CNS disorders. Overcoming this inhibitory barrier of reactive astrocytes might be crucial for CNS repair. Up-regulation and activation of epidermal growth factor receptor (EGFR) has been shown to trigger quiescent astrocytes into reactive astrocytes in response to several neural injuries. In this study, we investigated the effects of EGFR blockade in cultured astrocytes exposure to oxygen-glucose deprivation/reoxygenation (OGD/R) and in the rat middle cerebral artery occlusion (MCAO) model. Astrocytes in primary culture were used for OGD/R model and adult male Sprague-Dawley rats were used for MCAO model. Cell cycle progression of astrocytes in vitro was studied by flow cytometric analysis. Expression of phosphorylated epidermal growth factor receptor (p-EGFR), glial fibrillary acidic protein (GFAP), and cell proliferation-related molecules in vitro and in vivo were evaluated by immunostaining and western blot analysis. Neuronal apoptosis after MCAO was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Neurologic scores and infarct volumes post-ischemia were assessed in the rat MCAO model. Astrocytes became activated in the cultured astrocytes exposure to OGD/R and in the rat brain after MCAO, accompanied with phosphorylation of EGFR. EGFR blockade significantly decreased expression of p-EGFR, inhibited cell cycle progression of astrocytes, and reduced reactive astrogliosis in vitro and in vivo. EGFR inhibition also reduced infarct volumes and improved neurologic scores of rats after MCAO. Our findings indicated that blocking EGFR pathway might attenuate reactive astrogliosis through inhibiting cell cycle progression and protect against ischemic brain injury in rats.  相似文献   

5.
Inflammation and apoptosis play important roles in the initiation and progression of acute lung injury (ALI). Our previous study has shown that progranulin (PGRN) exerts lung protective effects during LPS‐induced ALI. Here, we have investigated the potential roles of PGRN‐targeting microRNAs (miRNAs) in regulating inflammation and apoptosis in ALI and have highlighted the important role of PGRN. LPS‐induced lung injury and the protective roles of PGRN in ALI were first confirmed. The function of miR‐34b‐5p in ALI was determined by transfection of a miR‐34b‐5p mimic or inhibitor in intro and in vivo. The PGRN level gradually increased and subsequently significantly decreased, reaching its lowest value by 24 hr; PGRN was still elevated compared to the control. The change was accompanied by a release of inflammatory mediators and accumulation of inflammatory cells in the lungs. Using bioinformatics analysis and RT‐PCR, we demonstrated that, among 12 putative miRNAs, the kinetics of the miR‐34b‐5p levels were closely associated with PGRN expression in the lung homogenates. The gain‐ and loss‐of‐function analysis, dual‐luciferase reporter assays, and rescue experiments confirmed that PGRN was the functional target of miR‐34b‐5p. Intravenous injection of miR‐34b‐5p antagomir in vivo significantly inhibited miR‐34b‐5p up‐regulation, reduced inflammatory cytokine release, decreased alveolar epithelial cell apoptosis, attenuated lung inflammation, and improved survival by targeting PGRN during ALI. miR‐34b‐5p knockdown attenuates lung inflammation and apoptosis in an LPS‐induced ALI mouse model by targeting PGRN. This study shows that miR‐34b‐5p and PGRN may be potential targets for ALI treatments.  相似文献   

6.
N‐myc belongs to the Myc oncogene family and plays an essential role in mammalian embryonic development. The expression of N‐myc is dynamically regulated during embryonic development; however, its expression pattern has not been well characterized due to the lack of a suitable animal model. In this paper, a genetically modified mouse model was generated in which the enhanced green fluorescent protein (EGFP) coding sequence was inserted into the N‐myc locus, so that endogenous N‐myc expression could be traced by the signal of EGFP. The EGFP signal in the transgenic mouse was confirmed to be consistent with the expression pattern of endogenous N‐myc by fluorescence microscopy and immunohistochemical staining. Furthermore, the spatial and temporal expression of EGFP was observed in the central and peripheral nervous system, heart, lung and kidney, given the known indispensable role of N‐myc in their formation. EGFP was also strongly detected in the liver, paranephros and the epithelium of the intestine. The EGFP signal can be used to trace N‐myc expression in this transgenic mouse model. N‐myc expression was observed in specific locations and cell lineages, and dynamically changed during embryonic development. The changing N‐myc expression pattern seen in mouse embryonic development and the animal model described in this paper provide important insights and a new tool to research N‐myc function.  相似文献   

7.
The objective of this study was to examine the changes in the activity and expression of ectonucleotidase enzymes in the model of unilateral cortical stab injury (CSI) in rat. The activities of ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) and ecto 5'-nucleotidase were assessed by measuring the levels of ATP, ADP and AMP hydrolysis in the crude membrane preparations obtained from injured left cortex, right cortex, left and right caudate nucleus, whole hippocampus and cerebellum. Significant increase in NTPDase and ecto 5'-nucleotidase activities was observed in the injured cortex following CSI, whereas in other brain areas only an increase in ecto 5'-nucleotidase activity was seen. Immunohistochemical analysis performed using antibodies specific to NTPDase 1 and ecto 5'-nucleotidase demonstrated that CSI induced significant changes in enzyme expression around the injury site. Immunoreactivity patterns obtained for NTPDase 1 and ecto 5'-nucleotidase were compared with those obtained for glial fibrillary acidic protein, as a marker of astrocytes and complement receptor type 3 (OX42), as a marker of microglia. Results suggest that up-regulation of ectonucleotidase after CSI is catalyzed by cells that activate in response to injury, i.e. cells immunopositive for NTPDase 1 were predominantly microglial cells, whereas cells immunopositive for ecto 5'-nucleotidase were predominantly astrocytes.  相似文献   

8.
9.
The efficacy of the amphipathic ketoamide calpain inhibitor SNJ‐1945 in attenuating calpain‐mediated degradation of the neuronal cytoskeletal protein α‐spectrin was examined in the controlled cortical impact (CCI) traumatic brain injury (TBI) model in male CF‐1 mice. Using a single early (15 min after CCI‐TBI) i.p. bolus administration of SNJ‐1945 (6.25, 12.5, 25, or 50‐mg/kg), we identified the most effective dose on α‐spectrin degradation in the cortical tissue of mice at its 24 h peak after severe CCI‐TBI. We then investigated the effects of a pharmacokinetically optimized regimen by examining multiple treatment paradigms that varied in dose and duration of treatment. Finally, using the most effective treatment regimen, the therapeutic window of α‐spectrin degradation attenuation was assessed by delaying treatment from 15 min to 1 or 3 h post‐injury. The effect of SNJ‐1945 on α‐spectrin degradation exhibited a U‐shaped dose–response curve when treatment was initiated 15 min post‐TBI. The most effective 12.5 mg/kg dose of SNJ‐1945 significantly reduced α‐spectrin degradation by ~60% in cortical tissue. Repeated dosing of SNJ‐1945 beginning with a 12.5 mg/kg dose did not achieve a more robust effect compared with a single bolus treatment, and the required treatment initiation was less than 1 h. Although calpain has been firmly established to play a major role in post‐traumatic secondary neurodegeneration, these data suggest that even brain and cell‐permeable calpain inhibitors, when administered alone, do not show sufficient cytoskeletal protective efficacy or a practical therapeutic window in a mouse model of severe TBI. Such conclusions need to be verified in the human clinical situation.  相似文献   

10.
《Luminescence》2004,19(1):1-7
Indole‐2 and 3‐carboxamides (IDs) are proposed to be selective cyclooxygenase inhibitors. Since cyclooxygenase‐1 may be involved in reactive oxygen species (ROS) production, we hypothesize that these indole derivatives have antioxidative properties. We have employed chemiluminescence (CL) and electron spin resonance (ESR) spin trapping to examine this hypothesis. We report here the results of a study of reactivity of 10 selected indole derivatives towards ROS. The following generators of ROS were applied: potassium superoxide (KO2) as a source of superoxide radicals (O2·?), the Fenton reaction (Co‐EDTA/H2O2) for hydroxyl radicals (HO·), and a mixture of alkaline aqueous H2O2 and acetonitrile for singlet oxygen (1O2). Hydroxyl radicals were detected as 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) spin adduct, whereas 2,2,6,6‐tetramethyl‐piperidine (TEMP) was used as a detector of 1O2. Using the Fenton reaction, 0.5 mmol/L IDs were found to inhibit DMPO‐?H radical formation in the range 7–37%. Furthermore the tested compounds containing the thiazolyl group also inhibited the 1O2‐dependent TEMPO radical, generated in the acetonitrile + H2O2 system. About 20% inhibition was obtained in the presence of 0.5 mmol/L IDs. 1 mmol/L IDs caused an approximately 13–70% decrease in the CL sum from the O2·? generating system (1 mmol/L). The aim of this paper is to evaluate these indole derivatives as antioxidants and their abilities to scavenge ROS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The four and a half LIM domain protein 2 (FHL2) is a member of the four and a half LIM domain (FHL) gene family, and it is associated with cholesterol‐enriched diet‐promoted atherosclerosis. However, the effect of FHL2 protein on vascular remodelling in response to hemodynamic alterations remains unclear. Here, we investigated the role of FHL2 in a model of restricted blood flow‐induced atherosclerosis. To promote neointimal hyperplasia in vivo, we subjected FHL2+/+ and FHL2?/? mice to partial ligation of the left carotid artery (LCA). The expression of p‐ERK and p‐AKT was decreased in FHL2?/? mice. FHL2 bound to AKT regulated AKT phosphorylation and led to Rac1‐GTP inactivation. FHL2 silencing in human aortic smooth muscle cells down‐regulated the PDGF‐induced phosphorylation of ERK and AKT. Furthermore, FHL2 silencing reduced cytoskeleton conformational changes and caused cell cycle arrest. We concluded that FHL2 is essential for the regulation of arterial smooth muscle cell function. FHL2 modulates proliferation and migration via mitogen‐activated protein kinase (MAPK) and PI3K‐AKT signalling, leading to arterial wall thickening and thus neointimal hyperplasia.  相似文献   

12.
13.
14.
We evaluated the effects of ibuprofen on cytokine production and mortality in a mouse model of septic shock induced by Vibrio vulnificus, strain Chi Mei Vv05191. Ibuprofen (50 mg/kg) or saline (control) was given to female BALB/cByJ mice for three consecutive days before exposure to the pathogen. For cytokine production, serum and peritoneal fluid were assayed for IL‐1β, IL‐6, TNF‐α, and MIP‐2 by ELISA at 3, 6, and 9 hr after intraperitoneal infection of the organism. At 6 hr after infection, serum and peritoneal fluid levels of IL‐6, TNF‐α, and MIP‐2 were significantly higher in the ibuprofen group. For mortality determination, 73 mice (37 ibuprofen, 36 control) were injected intramuscularly with V. vulnificus. Kaplan–Meier survival curves were analyzed. Survival was significantly decreased by ibuprofen only for the lowest inoculum (25 CFU) of V. vulnificus. Administration of ibuprofen before infection may augment the pathogenesis of V. vulnificus by stimulating cytokine production.  相似文献   

15.
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. For the irreversibility of primary injury, therapies of SCI mainly focus on secondary injury, whereas inflammation is considered to be a major target for secondary injury; however the regulation of inflammation in SCI is unclear and targeted therapies are still lacking. In this study, we found that the expression of BRD4 was correlated with pro‐inflammatory cytokines after SCI in rats; in vitro study in microglia showed that BRD4 inhibition either by lentivirus or JQ1 may both suppress the MAPK and NF‐κB signalling pathways, which are the two major signalling pathways involved in inflammatory response in microglia. BRD4 inhibition by JQ1 not only blocked microglial M1 polarization, but also repressed the level of pro‐inflammatory cytokines in microglia in vitro and in vivo. Furthermore, BRD4 inhibition by JQ1 can improve functional recovery and structural disorder as well as reduce neuron loss in SCI rats. Overall, this study illustrates that microglial BRD4 level is increased after SCI and BRD4 inhibition is able to suppress M1 polarization and pro‐inflammatory cytokine production in microglia which ultimately promotes functional recovery after SCI.  相似文献   

16.
17.
The duality of the inflammatory response to traumatic brain injury   总被引:19,自引:0,他引:19  
One and a half to two million people sustain a traumatic brain injury (TBI) in the US each year, of which approx 70,000–90,000 will suffer from long-term disability with dramatic impacts on their own and their families’ lives and enormous socio-economic costs. Brain damage following traumatic injury is a result of direct (immediate mechanical disruption of brain tissue, or primary injury) and indirect (secondary or delayed) mechanisms. These secondary mechanisms involve the initiation of an acute inflammatory response, including breakdown of the blood-brain barrier (BBB), edema formation and swelling, infiltration of peripheral blood cells and activation of resident immunocompetent cells, as well as the intrathecal release of numerous immune mediators such as interleukins and chemotactic factors. An overview over the inflammatory response to trauma as observed in clinical and in experimental TBI is presented in this review. The possibly harmful/beneficial sequelae of post-traumatic inflammation in the central nervous system (CNS) are discussed using three model mediators of inflammation in the brain, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β). While the former two may act as important mediators for the initiation and the support of post-traumatic inflammation, thus causing additional cell death and neurologic dysfunction, they may also pave the way for reparative processes. TGF-β, on the other hand, is a potent anti-inflammatory agent, which may also have some deleterious long-term effects in the injured brain. The implications of this duality of the post-traumatic inflammatory response for the treatment of brain-injured patients using anti-inflammatory strategies are discussed.  相似文献   

18.
19.
20.
Mitochondrial fission and fusion are important for mitochondrial function, and dynamin 1‐like protein (DNM1L) is a key regulator of mitochondrial fission. We investigated the effect of mitochondrial fission on mitochondrial function and inflammation in fibroblast‐like synoviocytes (FLSs) during rheumatoid arthritis (RA). DNM1L expression was determined in synovial tissues (STs) from RA and non‐RA patients. FLSs were isolated from STs and treated with a DNM1L inhibitor (mdivi‐1, mitochondrial division inhibitor 1) or transfected with DNM1L‐specific siRNA. Mitochondrial morphology, DNM1L expression, cell viability, mitochondrial membrane potential, reactive oxygen species (ROS), apoptosis, inflammatory cytokine expression and autophagy were examined. The impact of mdivi‐1 treatment on development and severity of collagen‐induced arthritis (CIA) was determined in mice. Up‐regulated DNM1L expression was associated with reduced mitochondrial length in STs from patients with RA and increased RA severity. Inhibition of DNM1L in FLSs triggered mitochondrial depolarization, mitochondrial elongation, decreased cell viability, production of ROS, IL‐8 and COX‐2, and increased apoptosis. DNM1L deficiency inhibited IL‐1β–mediated AKT/IKK activation, NF‐κBp65 nuclear translocation and LC3B‐related autophagy, but enhanced NFKBIA expression. Treatment of CIA mice with mdivi‐1 decreased disease severity by modulating inflammatory cytokine and ROS production. Our major results are that up‐regulated DNM1L and mitochondrial fission promoted survival, LC3B‐related autophagy and ROS production in FLSs, factors that lead to inflammation by regulating AKT/IKK/NFKBIA/NF‐κB signalling. Thus, inhibition of DNM1L may be a new strategy for treatment of RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号