首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

2.
D Bai  D R Knott 《Génome》1994,37(3):405-409
Six accessions of Triticum turgidum var. dicoccoides L. (4x, AABB) of diverse origin were tested with 10 races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and 10 races of stem rust (P. graminis f.sp. tritici Eriks. &Henn.). Their infection type patterns were all different from those of lines carrying the Lr or Sr genes on the A or B genome chromosomes with the same races. The unique reaction patterns are probably controlled by genes for leaf rust or stem rust resistance that have not been previously identified. The six dicoccoides accessions were crossed with leaf rust susceptible RL6089 durum wheat and stem rust susceptible 'Kubanka' durum wheat to determine the inheritance of resistance. They were also crossed in diallel to see whether they carried common genes. Seedlings of F1, F2, and BC1F2 generations from the crosses of the dicoccoides accessions with RL6089 were tested with leaf rust race 15 and those from the crosses with 'Kubanka' were tested with stem rust race 15B-1. The F2 populations from the diallel crosses were tested with both races. The data from the crosses with the susceptible durum wheats showed that resistance to leaf rust race 15 and stem rust race 15B-1 in each of the six dicoccoides accessions is conferred by a single dominant or partially dominant gene. In the diallel crosses, the dominance of resistance appeared to be affected by different genetic backgrounds. With one exception, the accessions carry different resistance genes: CI7181 and PI 197483 carry a common gene for resistance to leaf rust race 15. Thus, wild emmer wheat has considerable genetic diversity for rust resistance and is a promising source of new rust resistance genes for cultivated wheats.  相似文献   

3.
Martínez F  Niks RE  Moral A  Urbano JM  Rubiales D 《Hereditas》2001,135(2-3):193-197
A collection of 917 accessions of Spanish durum and bread wheat was screened for resistance to leaf rust (Puccinia triticina) under field conditions at three locations. Resistance levels ranged from very low to very high, high susceptibility being most frequent. Relative disease severity (referred to the most susceptible accession = 100%) was lower than 20% in about 6% of the accessions in each location. In the collection most of the lines (84%) displayed a susceptible infection type. A final selection of seven accessions (one of them durum) displaying low severity level in the field and high infection type in a growth chamber was chosen for further studies. High levels of partial resistant with longer latency period and high percentage of early aborted colonies without necrosis were found. They might be used in breeding programmes.  相似文献   

4.
Genetic analysis of durable resistance against leaf rust in durum wheat   总被引:1,自引:0,他引:1  
The Italian durum wheat cultivar Creso possesses a high level of durable resistance to leaf rust based on both hypersensitive and non-hypersensitive components. In order to investigate the genetic basis of this resistance, a segregating population composed of 123 recombinant inbred lines (RILs) derived from the cross Creso × Pedroso, was evaluated for disease severity in adult plants under field conditions. Furthermore, the resistance of parents and RILs was evaluated by assessing macroscopically the latency period and microscopically the number and type of pathogen colonies formed following artificial inoculation with a specific isolate. This experiment was performed at controlled conditions at two developmental stages. Besides some minor QTLs, one major QTL explaining both reduction of disease severity in the field and increased latency period was found on the long arm of chromosome 7B, and closely associated PCR-based and DArT markers were identified. Daniela Marone and Ana I. Del Olmo contributed equally to the work.  相似文献   

5.
Stem rust caused by Puccinia graminis f. sp. tritici was historically one of the most destructive diseases of wheat worldwide. The evolution and rapid migration of race TTKSK (Ug99) and derivatives, first detected in Uganda in 1999, are of international concern due to the virulence of these races to widely used stem rust resistance genes. In attempts to identify quantitative trait loci (QTL) linked with resistance to stem rust race Ug99, 95 recombinant inbred lines that were developed from a cross between two durum wheat varieties, Kristal and Sebatel, were evaluated for reaction to stem rust. Seven field trials at two locations were carried out in main and off seasons. In addition to the natural infection, the nursery was also artificially inoculated with urediniospores of stem rust race Ug99 and a mixture of locally collected stem rust urediniospores. A genetic map was constructed based on 207 simple sequence repeat (SSR) and two sequence tagged site loci. Using composite interval mapping, nine QTL for resistance to stem rust were identified on chromosomes 1AL, 2AS, 3BS, 4BL, 5BL, 6AL 7A, 7AL and 7BL. These results suggest that durum wheat resistance to stem rust is oligogenic and that there is potential to identify previously uncharacterized resistance genes with minor effects. The SSR markers that are closely linked to the QTL can be used for marker-assisted selection for stem rust resistance in durum wheat.  相似文献   

6.
Haustoria of Puccinia triticina (wheat leaf rust fungus) and P. hordei (barley leaf rust fungus) were isolated from susceptible and partially resistant wheat lines, and susceptible, hypersensitive and partially resistant barley lines. Haustoria were counted and measured. The size of haustoria was similar in the partially resistant and susceptible genotypes but haustoria were smaller in the hypersensitive barley line L94+Pa7. The number of haustoria was reduced in both partially and hypersensitive lines when compared with susceptible ones. Therefore it seems that the reduction in the number of haustoria is a consequence of the resistance that can be attributable either to early abortion of infection units or reduced colony growth. The reduction of the number of haustoria was more pronounced in the adult plant stage.  相似文献   

7.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

8.
Leaf rust, caused by the fungus Puccinia triticina, is the most devastating disease of wheat worldwide, which sometimes becomes epidemic. The pathogen evolves into new strains, making its control difficult. Though more than 60 leaf rust resistant genes are now known, only limited insight is available into the molecular mechanism involved in this host pathogen interaction. In the present study, quantitative real-time PCR based differential gene expression profiling was examined for five target genes encoding for chitinase3, β-1,3/1,4 glucanase, thaumatin-like protein, peroxidase2 and mitogen activated protein kinase1 to unravel their coordinated action during compatible and incompatible interaction, to inhibit the pathogen progression and to identify the time-period of maximum defense activity. Spatio-temporal expression profiling suggested that the maximum defense activity occurred at 12-24?hours post inoculation, whereas the state of infection and degree of resistance was predicted using coordinated unique expression signatures of target genes. The significant differences of targeted gene expression between resistant mock inoculated, resistant infected and susceptible infected plants were evaluated using t test at significance level of p?相似文献   

9.
Martínez F  Niks RE  Singh RP  Rubiales D 《Hereditas》2001,135(2-3):111-114
Components of resistance conferred by the Lr46 gene, reported as causing "slow rusting" resistance to leaf rust in wheat, were studied and compared with the effects of Lr34 and genes for quantitative resistance in cv. Akabozu. Lr34 is a gene that confers non-hypersensitive type of resistance. The effect of Lr46 resembles that of Lr34 and other wheats reported with partial resistance. At macroscopic level, Lr46 produced a longer latency period than observed on the susceptible recurrent parent Lalbahadur, and a reduction of the infection frequency not associated with hypersensitivity. Microscopically, Lr46 increased the percentage of early aborted infection units not associated with host cell necrosis and decreased the colony size. The effect of Lr46 is comparable to that of Lr34 in adult plant stage, but in seedling stage its effect is weaker than that of Lr34.  相似文献   

10.
Wheat leaf rust (Puccinia triticina) is becoming a serious concern in Spanish wheat, especially on durum wheat where acreage has enormously increased. Host resistance is the preferred method of disease control, but the virulence spectrum of the leaf rust population in Spain is currently unknown. In order to deploy effective Lr genes, this study was conducted to characterize the virulence spectrum of leaf rust in Andalusia (Spain). Isolates were obtained from surveys of wheat fields across Andalusia from 1998 to 2000. From 56 isolates phenotyped, 35 pathotypes were identified. Virulence to Lr10, Lr11, Lr14a, Lr14b and Lr18 was high (>96%), while virulence to Lr9 and Lr24 were not found. None of the isolates collected from durum wheat were virulent to Lr1, Lr3, Lr3ka, Lr3bg, Lr15, Lr16 and Lr17, while many of the isolates collected on bread wheat showed virulence on these genes, indicating a certain specialization in the leaf rust infecting durum wheat. Population dynamics of current wheat leaf rust pathotypes in terms of mutation and migration are discussed.  相似文献   

11.
12.
In Tunisia, the Hessian fly Mayetiola destructor Say is a major pest of durum wheat (Triticum durum Desf.) and bread wheat (T. aestivum L.). Genetic resistance is the most efficient and economical method of control of this pest. To date, 31 resistance genes, designated H1-H31, have been identified in wheat. These genes condition resistance to the insect genes responsible for virulence. Using wheat cultivars differing for the presence of an individual Hessian fly resistance gene and random amplified polymorphic DNA (RAPD) analysis, we have identified a polymorphic 386-bp DNA marker (Xgmib1-1A.1) associated with the H11 Hessian fly resistance gene. Blast analysis showed a high identity with a short region in the wild wheat (T. monococcum) genome, adjacent to the leaf rust resistance Lr10 gene. A genetic linkage was reported between this gene (Lr10) and Hessian fly response in wheat. These data were used for screening Hessian fly resistance in Tunisian wheat germplasm. Xgmib1-1A.1-like fragments were detected in four Tunisian durum and bread wheat varieties. Using these varieties in Hessian fly breeding programs in Tunisia would be of benefit in reducing the damage caused by this fly.  相似文献   

13.
14.
The emergence and rapid spread of virulent races of wheat stem rust has driven a search for sources of resistance for durable resistance breeding. This study was carried out to identify possible sources of stem rust resistance between Ethiopian wheat lines. Two hundred and fifty‐two wheat accessions and a universal suscept, cultivar Morocco were evaluated for their resistance at the seedling stage to the stem rust isolate Ug99 in a controlled environment. Ninety‐one lines that exhibited intermediate and susceptible seedling reactions were further field tested in 2012 main season for their slow rusting characteristics. Among the 91, 38 genotypes that had high to moderate level of slow rusting were advanced to a 2013 off season field evaluation. Slow rusting resistance at the adult‐plant stage was assessed through the determination of final disease severity (FRS), coefficient of infection (CI), and relative area under disease progressive curve (rAUDPC). The results revealed that wheat lines H04‐2, 204408‐3, 214551‐1, 231545‐1, 7041‐1, 7514‐1, 226385‐1, 226815‐1, 7579‐1 and 222495‐1 had low values of FRS, CI and rAUDPC and were regarded as good slow rusting lines. Of these 231545‐1, 7041‐1, 226815‐1 and 7579‐1 exhibited complete susceptibility at the seedling stage, with infection types ranging from 3? to 3+, which suggests that they possess true slow rusting resistance. Lines 237886‐1, 227059‐1, 203763‐1, 226275‐1, 227068‐2, 226278‐1 and 7994‐1 had moderate values for the stem rust resistance parameters and were identified as possessing a moderate level of slow rusting. High correlations were observed between different parameters of slow rusting. Among the slow rusting lines 231545‐1, H04‐2 and 222495‐1 had high yields and kernel weight in both seasons. The slow rusting lines identified from this study can be used to breed for stem rust resistance in wheat.  相似文献   

15.
16.
Severity of peanut rust caused by Puccinia arachidis was reduced by 15 edible oils tested. Flaxseed oil was the best suppressing the disease completely. Peanut oil, wheat germ oil, brown rice oil, aloe oil, olive oil and corn germ oil also caused more than 75% reduction in disease incidence. Flaxseed oil reduced the rust to a negligible level in the greenhouse and was nearly as effective as the fungicide chlorothalonil in peanut field trials. The control of peanut rust by flaxseed oil did not result from activation of the host defence mechanisms. Flaxseed oil did not affect urediniospore germination, but reduced the germ tube length and completely suppressed appressorium formation which is essential for the pathogen to form an infection peg to pass through the stomatal aperture and infect the host tissue. Although the pathogen had penetrated, flaxseed oil still exerted some inhibitory effect against the growth of the pathogen. The advantages of using flaxseed oil to control peanut rust are that it is relatively inexpensive, easy to prepare, and friendly to the environment and human health.  相似文献   

17.
The degree of adult-plant resistance conferred by the gene Lr37 in RL6081 (Thatcher*8/Lr37) to four avirulent leaf rust pathotypes was quantified by assessing histological components as well as latent period, uredinium density and uredinium size. Histological observations on the adaxial flag leaf surfaces revealed significant arrest of fungal structures in RL6081 at early infection stages. Furthermore, host cell necrosis typical of a posthaustorial host-resistance mechanism was conspicuous in sizeably reduced colonies on this genotype. Lr37 significantly decreased the rate of uredinial appearance of all four pathotypes. Compared with Thatcher, fewer uredinia of smaller dimensions developed on flag leaves of RL6081. Characterization of resistance indicated that disease development in genotypes with the gene Lr37 should be extremely limited.  相似文献   

18.
Zhang H  Wang C  Cheng Y  Wang X  Li F  Han Q  Xu J  Chen X  Huang L  Wei G  Kang Z 《Planta》2011,234(5):979-991
Non-host resistance (NHR) confers plant species immunity against the majority of microbes. As an important crop, wheat can be damaged by several Puccinia species but is immune to all Uromyces species. Here, we studied the basis of NHR in wheat against the broad bean rust pathogen Uromyces fabae (Uf). In the wheat-Uf interaction, microscopic observations showed that urediospores germinated efficiently on wheat leaves. However, over 98% of the germ tubes failed to form appressoria over stomata. For the few that invaded through stomata, the majority of them failed to penetrate wheat mesophyll cells. At 96 hours after inoculation, less than 4% of the Uf infection units that had entered the mesophyll tissue formed haustoria. Attempted penetration by haustorium mother cells induced the thickening of cell wall and the formation of papillae in plant cells, which arrested the development or growth of Uf penetration pegs. For the Uf haustoria formed in wheat cells, they were encased in callose-like materials and did not elicit hypersensitive response. Localized accumulation of H(2)O(2) were observed in plant cell walls, papillae and encasement of haustoria during the wheat-Uf interaction. Furthermore, quantitative RT-PCR analysis showed that several genes involved in basal resistance and oxidative stress responses were up-regulated during Uf infection. In conclusion, our study revealed the cytological and molecular bases of NHR in wheat against the non-adapted rust fungus Uf, and highlighted the significance of papilla production in the prehaustorial NHR.  相似文献   

19.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

20.
Stripe rust caused by Puccinia striiformis f.sp. tritici is the most serious disease of wheat globally including south‐eastern Anatolia of Turkey, where wheat originated. In this study, 12 spring wheat genotypes were artificially inoculated and preserved in two locations, Diyarbak?r and Ad?yaman, during the 2011–2012 season to investigate loss in yield and yield components. Genotypes were evaluated at the adult plant stage using two partial resistance parameters: final disease severity and area under the disease progress curve (AUDPC). AUDPC ranged from 14.8 to 860 in Diyarbak?r, and 74 to 760 in Ad?yaman. Yield loss ranged from 0.6 to 68.5% in Diyarbak?r and 9.8 to 56.8% in Ad?yaman. Genotypes G1, G5, G7 and G8 were found to lose less yield, while higher yield loss was observed in G3, G4 (Nurkent), G5 and G9 (Karacada?‐98). The highest loss in thousand kernel weight was observed in a susceptible cultivar Karacada?‐98 in Diyarbak?r followed by 43.4 and 24.4% in Ad?yaman. Test weight loss reached 8.89% in Diyarbak?r and 20.8% in Ad?yaman. Yield loss and AUDPC had a positive significant relationship. Based on the values of AUDPC, final disease severity and yield loss, three major clusters were formed for 12 wheat genotypes. Partially resistant genotypes were found to lose less grain yield and seemed to be stronger against severe stripe rust pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号