首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bipolaris sorokiniana is the causal agent of multiple diseases on wheat and barley and is the primary constraint to cereal production throughout South Asia. Despite its significance, the molecular basis of disease is poorly understood. To address this, the genomes of three Australian isolates of B. sorokiniana were sequenced and screened for known pathogenicity genes. Sequence analysis revealed that the isolate BRIP10943 harboured the ToxA gene, which has been associated previously with disease in the wheat pathogens Parastagonospora nodorum and Pyrenophora tritici‐repentis. Analysis of the regions flanking ToxA within B. sorokiniana revealed that it was embedded within a 12‐kb genomic element nearly identical to the corresponding regions in P. nodorum and P. tritici‐repentis. A screen of 35 Australian B. sorokiniana isolates confirmed that ToxA was present in 12 isolates. Sequencing of the ToxA genes within these isolates revealed two haplotypes, which differed by a single non‐synonymous nucleotide substitution. Pathogenicity assays showed that a B. sorokiniana isolate harbouring ToxA was more virulent on wheat lines that contained the sensitivity gene when compared with a non‐ToxA isolate. This work demonstrates that proteins that confer host‐specific virulence can be horizontally acquired across multiple species. This acquisition can dramatically increase the virulence of pathogenic strains on susceptible cultivars, which, in an agricultural setting, can have devastating economic and social impacts.  相似文献   

2.
Tan spot, a foliar disease of wheat, is caused by the fungus Pyrenophora tritici‐repentis. On susceptible wheat cultivars, P. tritici‐repentis induces two distinct symptoms: tan necrosis and extensive chlorosis. Presently isolates of P. tritici‐repentis are classified into 11 races based on their virulence on a set of wheat differential genotypes. In nature, this pathogen reproduces both sexually and asexually, but the extent of genetic variability in the P. tritici‐repentis population of western Canada is unknown. This study was conducted to assess the genetic variability among different isolates of P. tritici‐repentis and to determine if similarities among isolates are correlated with race classification or geographic origin of the isolates. Thirty‐three isolates of P. tritici‐repentis and one isolate each of P. teres f. sp. teres, P. teres f. sp. maculata, P. graminea, Helminthosporium sativum and an uncharacterized isolate were studied with 30 random amplified polymorphic DNA (RAPD) primers. Cluster analysis showed that all isolates had unique banding patterns and that clustering of isolates was independent of their race designation or geographic origin. Analysis of molecular variation (amova ) showed that 96.8% of variability occurred among isolates and among race variability accounted for only 3.2% of the total variability.  相似文献   

3.
4.
Pyrenophora tritici‐repentis causes tan spot, an important foliar disease of wheat. The fungus produces multiple host‐specific toxins, including Ptr ToxB, a chlorosis‐inducing protein encoded by the ToxB gene. A homolog of ToxB is also found in avirulent isolates of the fungus. In order to improve understanding of the role of this homolog and evaluate the general pathogenic ability of P. tritici‐repentis, we compared the proteomes of avirulent race 4 and virulent race 5 isolates of the pathogen. Western blotting analysis revealed the presence of Ptr ToxB in spore germination and culture fluids of race 5 but not race 4. A comprehensive proteome‐level comparison by 2‐DE indicated 133 differentially abundant proteins in the secretome (29 proteins) and mycelium (104 proteins) of races 4 and 5, of which 63 were identified by MS/MS. A number of the proteins found to be up‐regulated in race 5 have been implicated in microbial virulence in other pathosystems, and included the secreted enzymes α‐mannosidase and exo‐β‐1,3‐glucanase, heat‐shock and BiP proteins, and various metabolic enzymes. These proteome‐level differences suggest a reduced general pathogenic ability in race 4 of P. tritici‐repentis, irrespective of toxin production. Such differences may reflect an adaptation to a saprophytic habit.  相似文献   

5.
Pyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an ‘inverse’ gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development. However, after either deletion of the gene encoding the HST ToxA or, reciprocally, heterologous expression of ToxA in a race that does not normally produce the toxin followed by inoculation of ToxA-sensitive and insensitive wheat cultivars, we demonstrate that ToxA symptom development can be epistatic to other HST-induced symptoms. ToxA epistasis on certain ToxA-sensitive wheat cultivars leads to genotype-specific increases in total leaf area affected by disease. These data indicate a complex interplay between host responses to HSTs in some genotypes and underscore the challenge of identifying additional HSTs whose activity may be masked by other toxins. Also, through mycelial staining, we acquire preliminary evidence that ToxA may provide additional benefits to fungal growth in planta in the absence of its cognate recognition partner in the host.  相似文献   

6.
7.
A total of 88 Pyrenophora tritici‐repentis (Died.) Drechsler isolates from different hosts and localities were screened for catenarin production using thin layer chromatography. Catenarin was detected in 29% of the tested strains. The level of this compound ranged from 2 to 400 ppm and was especially high in case of fungus variants unable to biosynthesize melanins. The extracted pigment exhibited antibiotic properties against Gram‐positive bacteria (Aureobacterium liquefaciens, Arthrobacter globiformis, Bacillus brevis, B. circulans, B. subtilis and Curtobacterium plantarum). Catenarin also inhibited the growth of fungi accompanying P. tritici‐repentis during the saprophytic phase of development. The most sensitive species was Epicoccum nigrum, whose growth was inhibited up to 90%.  相似文献   

8.
Tan spot is a devastating foliar disease of wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Much has been learned during the past two decades about the genetics of wheat–P. tritici-repentis interactions. Research has shown that the fungus produces at least three host-selective toxins (HSTs), known as Ptr ToxA, Ptr ToxB, and Ptr ToxC, that interact directly or indirectly with the products of the dominant host genes Tsn1, Tsc2, and Tsc1, respectively. The recent cloning and characterization of Tsn1 provided strong evidence that the pathogen utilizes HSTs to subvert host resistance mechanisms to cause disease. However, in addition to host–HST interactions, broad-spectrum, race non-specific resistance QTLs and recessively inherited qualitative ‘resistance’ genes have been identified. Molecular markers suitable for marker-assisted selection against HST sensitivity genes and for race non-specific resistance QTLs have been developed and used to generate adapted germplasm with good levels of tan spot resistance. Future research is needed to identify novel HSTs and corresponding host sensitivity genes, determine if the recessively inherited resistance genes are HST insensitivities, extend the current race classification system to account for new HSTs, and determine the molecular basis of race non-specific resistance QTLs and their relationships with host–HST interactions at the molecular level. Necrotrophic pathogens such as P. tritici-repentis are likely to become increasingly significant under a changing global climate making it imperative to further characterize the wheat–P. tritici-repentis pathosystem and develop tan spot resistant wheat varieties.  相似文献   

9.
Tan spot of wheat caused by Pyrenophora tritici‐repentis (Ptr) is a major leaf spot disease. No single control measure is likely to be successful in controlling tan spot and a fully integrated system of disease management is more likely to achieve a long‐term solution. Research to improve control efficacy has focused on fungicide improvement, resistant cultivars, the use of biological control agents (BCAs) mixtures and combinatorial approaches involving BCAs and plant resistance stimulants with complementary modes of action. Various biotic and abiotic agents can stimulate wheat defence mechanisms and so benefit resistance to Ptr infection. Among them, Trichoderma spp. have been widely used as antagonistic fungal agents against several pathogens as well as plant growth enhancers. Also, the synthetic agents acibenzolar‐S‐methyl (ASM) and thiamethoxam (TM) have provided broad‐spectrum disease and pest control as well as enhanced plant vigour against several fungal diseases. The aim of this research was to evaluate the effectiveness of two Trichoderma harzianum strains and two substances of synthetic origin (ASM and TM) on the suppression of tan spot and plant growth promotion of wheat plants. When BCAs, ASM and TM were applied to field plots on wheat cultivar Klein Escorpion, the severity of tan spot reduced and plant height, fresh weight, dry weight of shoots and dry weight of roots increased in comparison with the control. When applied prior to Ptr inoculation, ASM, TM and the strain Th1 of T. harzianum caused a reduction in necrotic lesions >50% compared to the control treatment. Seed treatment with TM resulted in a significant enhancement of plant height. Application of ASM significantly increased foliar fresh weight by 45% as compared to the control treatment, whereas foliar fresh weight increased 29% and 50% when TM and T. harzianum strain Th1 were applied as seed coating. Acibenzolar‐S‐methyl alone or combined with Th1 increased dry weight to >60%, whereas the effects of TM and Th1 on dry mass showed an increase that ranged from 57% to 25%. Plants treated with Th1 and both synthetic compounds achieved up to sixfold increment in root dry weight over the control.  相似文献   

10.
Manning VA  Ciuffetti LM 《The Plant cell》2005,17(11):3203-3212
The plant pathogenic fungus Pyrenophora tritici-repentis secretes host-selective toxins (HSTs) that function as pathogenicity factors. Unlike most HSTs that are products of enzymatic pathways, at least two toxins produced by P. tritici-repentis are proteins and, thus, products of single genes. Sensitivity to these toxins in the host is conferred by a single gene for each toxin. To study the site of action of Ptr ToxA (ToxA), toxin-sensitive and -insensitive wheat (Triticum aestivum) cultivars were treated with ToxA followed by proteinase K. ToxA was resistant to protease, but only in sensitive leaves, suggesting that ToxA is either protected from the protease by association with a receptor or internalized. Immunolocalization and green fluorescent protein tagged ToxA localization demonstrate that ToxA is internalized in sensitive wheat cultivars only. Once internalized, ToxA localizes to cytoplasmic compartments and to chloroplasts. Intracellular expression of ToxA by biolistic bombardment into both toxin-sensitive and -insensitive cells results in cell death, suggesting that the ToxA internal site of action is present in both cell types. However, because ToxA is internalized only in sensitive cultivars, toxin sensitivity, and therefore the ToxA sensitivity gene, are most likely related to protein import. The results of this study show that the ToxA protein is capable of crossing the plant plasma membrane from the apoplastic space to the interior of the plant cell in the absence of a pathogen.  相似文献   

11.
12.
Amplified fragment length polymorphism (AFLP) analysis has been used to analyse mainly 83 Czech isolates of Pyrenophora teres, P. graminea, P. tritici‐repentis and Helminthosporium sativum. Each species had distinct AFLP profiles. Using 19 primer combinations 948 polymorphic bands were detected. All main clusters in dendrogram correspond to the studied species. Even the two forms of P. teresP. teres f. teres (PTT) and P. teres f. maculata (PTM) – formed different clusters. Genetic diversity, with regard to the locality and the year of the sample's collection, was analysed separately within the AFLP‐based dendrogram cluster of PTT and PTM. Unweighted pair‐group method (UPGMA) analysis of the 37 isolates of PTT and 30 isolates of PTM, using 469 polymorphic bands, showed that the variability seemed to have been influenced more by the year of sampling than by the geographic origin of the isolate. The presence of intermediate haplotypes with a relatively high number of shared markers between the two groups indicated that hybridization between the forms of P. teres could happen, but it is probably often overlapped by selection pressure or genetic drift.  相似文献   

13.
The ToxA gene of Pyrenophora tritici-repentis encodes a host-selective toxin (Ptr ToxA) that has been shown to confer pathogenicity when used to transform a non-pathogenic wheat isolate. Major karyotype polymorphisms between pathogenic and non-pathogenic strains, and to a lesser extent among pathogenic strains, and among non-pathogenic strains were identified. ToxA was localized to a 3.0 Mb chromosome. PCR-based subtraction was carried out with the ToxA chromosome as tester DNA and genomic DNA from a non-pathogenic isolate as driver DNA. Seven of 8 single-copy probes that originated from the 3.0 Mb chromosome could be assigned to a 2.75 Mb chromosome of a non-pathogenic isolate. Nine different repetitive DNA probes originated from the 3.0 Mb chromosome, including sequences that correspond to known fungal transposable elements. Two additional single-copy probes that originated from a 3.4 Mb chromosome were unique to the pathogens and they correspond to a peptide synthetase gene. Our findings suggest substantial differences between pathogenic and non-pathogenic isolates of P. tritici-repentis.  相似文献   

14.
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is a destructive foliar disease in all types of cultivated wheat worldwide. Genetics of tan spot resistance in wheat is complex, involving insensitivity to fungal-produced necrotrophic effectors (NEs), major resistance genes, and quantitative trait loci (QTL) conferring race-nonspecific and race-specific resistance. The Nebraska hard red winter wheat (HRWW) cultivar ‘Wesley’ is insensitive to Ptr ToxA and highly resistant to multiple Ptr races, but the genetics of resistance in this cultivar is unknown. In this study, we used a recombinant inbred line (RIL) population derived from a cross between Wesley and another Nebraska cultivar ‘Harry’ (Ptr ToxA sensitive and highly susceptible) to identify QTL associated with reaction to tan spot caused by multiple races/isolates. Sensitivity to Ptr ToxA conferred by the Tsn1 gene was mapped to chromosome 5B as expected. The Tsn1 locus was a major susceptibility QTL for the race 1 and race 2 isolates, but not for the race 2 isolate with the ToxA gene deleted. A second major susceptibility QTL was identified for all the Ptr ToxC-producing isolates and located to the distal end of the chromosome 1A, which likely corresponds to the Tsc1 locus. Three additional QTL with minor effects were identified on chromosomes 7A, 7B, and 7D. This work indicates that both Ptr ToxA-Tsn1 and Ptr ToxC-Tsc1 interactions are important for tan spot development in winter wheat, and Wesley is highly resistant largely due to the absence of the two tan spot sensitivity genes.  相似文献   

15.
Recent studies have identified that proteinaceous effectors secreted by Parastagonospora nodorum are required to cause disease on wheat. These effectors interact in a gene‐for‐gene manner with host‐dominant susceptibilty loci, resulting in disease. However, whilst the requirement of these effectors for infection is clear, their mechanisms of action remain poorly understood. A yeast‐two‐hybrid library approach was used to search for wheat proteins that interacted with the necrotrophic effector SnTox3. Using this strategy we indentified an interaction between SnTox3 and the wheat pathogenicity‐related protein TaPR‐1‐1, and confirmed it by in‐planta co‐immunprecipitation. PR‐1 proteins represent a large family (23 in wheat) of proteins that are upregulated early in the defence response; however, their function remains ellusive. Interestingly, the P. nodorum effector SnToxA has recently been shown to interact specifically with TaPR‐1‐5. Our analysis of the SnTox3–TaPR‐1 interaction demonstrated that SnTox3 can interact with a broader range of TaPR‐1 proteins. Based on these data we utilised homology modeling to predict, and validate, regions on TaPR‐1 proteins that are likely to be involved in the SnTox3 interaction. Precipitating from this work, we identified that a PR‐1‐derived defence signalling peptide from the C‐terminus of TaPR‐1‐1, known as CAPE1, enhanced the infection of wheat by P. nodorum in an SnTox3‐dependent manner, but played no role in ToxA‐mediated disease. Collectively, our data suggest that P. nodorum has evolved unique effectors that target a common host‐protein involved in host defence, albeit with different mechanisms and potentially outcomes.  相似文献   

16.
Tan spot, caused by Pyrenophora tritici‐repentis, is an important foliar disease of wheat. The fungus produces the host‐specific, chlorosis‐inducing toxin Ptr ToxB. To better understand toxin action, we examined the effects of Ptr ToxB on sensitive wheat. Photosynthesis, as measured by infrared gas analysis, declined significantly within 12 h of toxin treatment, prior to the development of chlorosis at 48–72 h. Analysis by 2‐DE revealed a total of 102 protein spots with significantly altered intensities 12–36 h after toxin treatment, of which 66 were more abundant and 36 were less abundant than in the buffer‐treated control. The identities of 47 of these spots were established by MS/MS, and included proteins involved in the light reactions of photosynthesis, the Calvin cycle, and the stress/defense response. Based on the declines in photosynthesis and the identities of the differentially abundant proteins, we hypothesize that Ptr ToxB causes a rapid disruption in the photosynthetic processes of sensitive wheat, leading to the generation of ROS and oxidative stress. Although the photoprotective and repair mechanisms of the host appear to initially still be functional, they are probably overwhelmed by the continued production of ROS, leading to chlorophyll photooxidation and the development of chlorosis.  相似文献   

17.
ToxA is a proteinaceous necrotrophic effector produced by Stagonospora nodorum and Pyrenophora tritici-repentis. In this study, all eight mature isoforms of the ToxA protein were purified and compared. Circular dichroism spectra indicated that all isoforms were structurally intact and had indistinguishable secondary structural features. ToxA isoforms were infiltrated into wheat lines that carry the sensitivity gene Tsn1. It was observed that different wheat lines carrying identical Tsn1 alleles varied in sensitivity to ToxA. All ToxA isoforms induced necrosis when introduced into any Tsn1 wheat line but we observed quantitative variation in effector activity, with the least-active version found in isolates of P. tritici-repentis. Pathogen sporulation increased with higher doses of ToxA. The isoforms that induced the most rapid necrosis also induced the most sporulation, indicating that pathogen fitness is affected by differences in ToxA activity. We show that differences in toxin activity encoded by a single gene can contribute to the quantitative inheritance of necrotrophic virulence. Our findings support the hypothesis that the variation at ToxA results from selection that favors increased toxin activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号