首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.  相似文献   

2.
3.
4.
Vaccinia virus l1 protein is required for cell entry and membrane fusion   总被引:1,自引:1,他引:0  
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.  相似文献   

5.
6.
7.
8.
Francisella tularensis is a facultative intracellular pathogen. Its capacity to induce disease depends on the ability to invade and multiply within a wide range of eukaryotic cells, such as professional phagocytes. The comparative disinterest in tularemia in the past relative to other human bacterial pathogens is reflected in the paucity of information concerning the mechanisms of pathogenesis. Only a few genes and gene products associated with Francisella virulence are known to date. The aim of this study was to find and identify proteins of F. tularensis live vaccine strain induced in the presence of hydrogen peroxide, and to investigate the role of the IglC protein in the regulation of genes expressed upon peroxide stress. The [(35)S]-radiolabelled protein patterns were examined for both the wild live vaccine strain and its DeltaiglC1+2 mutant defective in synthesis of the IglC protein that was found to be strongly up-regulated during intracellular growth in murine macrophages in vitro and upon exposure to hydrogen peroxide. Globally, we found 21 protein spots whose levels were significantly altered in the presence of hydrogen peroxide in both the wild-type and mutant strains.  相似文献   

9.
To sense and defend against oxidative stress, cells depend on signal transduction cascades involving redox‐sensitive proteins. We previously identified SUMO (small ubiquitin‐related modifier) enzymes as downstream effectors of reactive oxygen species (ROS). Hydrogen peroxide transiently inactivates SUMO E1 and E2 enzymes by inducing a disulfide bond between their catalytic cysteines. How important their oxidation is in light of many other redox‐regulated proteins has however been unclear. To selectively disrupt this redox switch, we identified a catalytically fully active SUMO E2 enzyme variant (Ubc9 D100A) with strongly reduced propensity to maintain a disulfide with the E1 enzyme in vitro and in cells. Replacement of Ubc9 by this variant impairs cell survival both under acute and mild chronic oxidative stresses. Intriguingly, Ubc9 D100A cells fail to maintain activity of the ATM–Chk2 DNA damage response pathway that is induced by hydrogen peroxide. In line with this, these cells are also more sensitive to the ROS‐producing chemotherapeutic drugs etoposide/Vp16 and Ara‐C. These findings reveal that SUMO E1~E2 oxidation is an essential redox switch in oxidative stress.  相似文献   

10.
11.
AAK-2 is one of two alpha isoforms of the AMP-activated protein kinase in Caenorhabditis elegans and is involved in life span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. We found that AAK-2 was phosphorylated at threonine 243 in response to paraquat treatment and that this phosphorylation depends on PAR-4, the C. elegans LKB1 homologue. Both aak-2 mutation and par-4 knockdown increased the sensitivity of C. elegans worms to paraquat, and the double deficiency did not further increase sensitivity, indicating that aak-2 and par-4 act in a linear pathway. Both mutations also slowed body bending during locomotion and failed to reduce head oscillation in response to anterior touch. Consistent with this abnormal motility and behavioral response, expression of the AAK-2::green fluorescent protein fusion protein was observed in the ventral cord, some neurons, body wall muscle, pharynx, vulva, somatic gonad, and excretory cell. Our study suggests that AMPK can influence the behavior of C. elegans worms in addition to its well known function in metabolic control.  相似文献   

12.
Syk has been demonstrated to play a crucial role in oxidative stress signaling in B cells. Here we report that Syk is required for the activation of the phosphatidylinositol (PI) 3-kinase-Akt survival pathway in B cells exposed to oxidative stress. Phosphorylation and activation of the serine-threonine kinase Akt were markedly increased in B cells treated with H(2)O(2). In Syk-deficient DT40 cells treated with low doses of H(2)O(2) (10-100 microm), Akt activation was considerably reduced. Pretreatment with wortmannin, a PI 3-kinase-specific inhibitor, completely blocked the Syk-dependent Akt activation. Following stimulation by low doses of H(2)O(2), a significant increase in PI 3-kinase activity was found in wild-type but not in Syk-deficient cells. These findings suggest that PI 3-kinase mediates Syk-dependent Akt activation pathway. Furthermore, viability of Syk-deficient cells, after exposure to H(2)O(2), was dramatically decreased and caspase-9 activity was greatly increased compared with that of the wild-type cells. These results suggest that Syk is essential for the Akt survival pathway in B cells and enhances cellular resistance to oxidative stress-induced apoptosis.  相似文献   

13.
UGO1 encodes an outer membrane protein required for mitochondrial fusion   总被引:1,自引:0,他引:1  
Membrane fusion plays an important role in controlling the shape, number, and distribution of mitochondria. In the yeast Saccharomyces cerevisiae, the outer membrane protein Fzo1p has been shown to mediate mitochondrial fusion. Using a novel genetic screen, we have isolated new mutants defective in the fusion of their mitochondria. One of these mutants, ugo1, shows several similarities to fzo1 mutants. ugo1 cells contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. ugo1 mutants lose mitochondrial DNA (mtDNA). In zygotes formed by mating two ugo1 cells, mitochondria do not fuse and mix their matrix contents. Fragmentation of mitochondria and loss of mtDNA in ugo1 mutants are rescued by disrupting DNM1, a gene required for mitochondrial division. We find that UGO1 encodes a 58-kD protein located in the mitochondrial outer membrane. Ugo1p appears to contain a single transmembrane segment, with its NH(2) terminus facing the cytosol and its COOH terminus in the intermembrane space. Our results suggest that Ugo1p is a new outer membrane component of the mitochondrial fusion machinery.  相似文献   

14.
Candida albicans is a human pathogenic fungus which can undergo a morphological transition from yeast to hyphae in response to a variety of environmental stimuli. We analyzed a C. albicans Asc1 (Absence of growth Suppressor of Cyp1) protein which is entirely composed of seven repeats of the WD domain, and is conserved from fungi to metazoan. Deleting the ASC1 in C. albicans led to a profound defect in hyphal development under hypha-inducing conditions examined. Furthermore, deletion of the ASC1 attenuated virulence of C. albicans in a mouse model of systemic infection. These data strongly suggested that the conserved WD-repeat protein Asc1 is required for morphogenesis and pathogenesis of C. albicans.  相似文献   

15.
16.
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.  相似文献   

17.
The NEM-sensitive fusion protein, NSF, together with SNAPs (soluble NSF attachment proteins) and the SNAREs (SNAP receptors), is thought to be generally used for the fusion of transport vesicles to their target membranes. NSF is a homotrimer whose polypeptide subunits are made up of three distinct domains: an amino-terminal domain (N) and two homologous ATP-binding domains (D1 and D2). Mutants of NSF were produced in which either the order or composition of the three domains were altered. These mutants could not support intra-Golgi transport, but they indicated that the D2 domain was required for trimerization of the NSF subunits. Mutations of the first ATP-binding site that affected either the binding (K266A) or hydrolysis (E329Q) of ATP completely eliminated NSF activity. The hydrolysis mutant was an effective, reversible inhibitor of Golgi transport with an IC50 of 125 ng/50 microliters assay. Mutants in the second ATP-binding site (binding, K549A; hydrolysis, D604Q) had either 14 or 42% the specific activity of the wild-type protein, respectively. Using coexpression of an inactive mutant with wild-type subunits, it was possible to produce a recombinant form of trimeric NSF that contained a mixture of subunits. The mixed NSF trimers were inactive, even when only one mutant subunit was present, suggesting that NSF action requires each of the three subunits in a concerted mechanism. These studies demonstrate that the ability of the D1 domain to hydrolyze ATP is required for NSF activity and, therefore is required for membrane fusion. The D2 domain is required for trimerization, but its ability to hydrolyze ATP is not absolutely required for NSF function.  相似文献   

18.
19.
Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are the major enzymes involved in the biosynthesis of secondary metabolites, which have diverse activities, including roles as pathogenicity/virulence factors in plant pathogenic fungi. These enzymes are activated by 4'-phosphopantetheinylation at the conserved serine residues, which is catalysed by 4'-phosphopantetheinyl transferase (PPTase). PPTase is also required for primary metabolism (α-aminoadipate reductase, AAR). In the genome sequence of the cereal fungal pathogen Cochliobolus sativus, we identified a gene (PPT1) orthologous to the PPTase-encoding genes found in other filamentous ascomycetes. The deletion of PPT1 in C. sativus generated mutants (Δppt1) that were auxotrophic for lysine, unable to synthesize melanin, hypersensitive to oxidative stress and significantly reduced in virulence to barley cv. Bowman. To analyse the pleiotropic effects of PPT1, we also characterized deletion mutants for PKS1 (involved in melanin synthesis), AAR1 (for AAR) and NPS6 (involved in siderophore-mediated iron metabolism). The melanin-deficient strain (Δpks1) showed no differences in pathogenicity and virulence compared with the wild-type strain. Lysine-auxotrophic mutants (Δaar1) induced spot blotch symptoms, as produced by the wild-type strain, when inoculated on wounded barley leaves or when lysine was supplemented. The Δnps6 strain showed a slightly reduced virulence compared with the wild-type strain, but exhibited significantly higher virulence than the Δppt1 strain. Our results suggest that an unknown virulence factor, presumably synthesized by PKSs or NRPSs which are activated by PPTase, is directly responsible for high virulence of C. sativus on barley cv. Bowman.  相似文献   

20.
Disruption of the seqA gene of Salmonella enterica serovar Typhimurium causes defects similar to those described in E. coli: filament formation, aberrant nucleoid segregation, induction of the SOS response, envelope instability, and increased sensitivity to membrane-damaging agents. Differences between SeqA mutants of E. coli and S. enterica, however, are found. SeqA mutants of S. enterica form normal colonies and do not exhibit alterations in phage plaquing morphology. Lack of SeqA causes attenuation of S. enterica virulence by the oral route but not by the intraperitoneal route, suggesting a virulence defect in the intestinal stage of infection. However, SeqA mutants are fully proficient in the invasion of epithelial cells. We hypothesize that attenuation of SeqA mutants by the oral route may be caused by bile sensitivity, which in turn may be a consequence of envelope instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号