首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

An important feature in many genomic studies is quality control and normalization. This is particularly important when analyzing epigenetic data, where the process of obtaining measurements can be bias prone. The GAW20 data was from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), a study with multigeneration families, where DNA cytosine-phosphate-guanine (CpG) methylation was measured pre- and posttreatment with fenofibrate. We performed quality control assessment of the GAW20 DNA methylation data, including normalization, assessment of batch effects and detection of sample swaps.

Results

We show that even after normalization, the GOLDN methylation data has systematic differences pre- and posttreatment. Through investigation of (a) CpGs sites containing a single nucleotide polymorphism, (b) the stability of breeding values for methylation across time points, and (c) autosomal gender-associated CpGs, 13 sample swaps were detected, 11 of which were posttreatment.

Conclusions

This paper demonstrates several ways to perform quality control of methylation data in the absence of raw data files and highlights the importance of normalization and quality control of the GAW20 methylation data from the GOLDN study.
  相似文献   

2.

Background

GAW20 working group 5 brought together researchers who contributed 7 papers with the aim of evaluating methods to detect genetic by epigenetic interactions. GAW20 distributed real data from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, including single-nucleotide polymorphism (SNP) markers, methylation (cytosine-phosphate-guanine [CpG]) markers, and phenotype information on up to 995 individuals. In addition, a simulated data set based on the real data was provided.

Results

The 7 contributed papers analyzed these data sets with a number of different statistical methods, including generalized linear mixed models, mediation analysis, machine learning, W-test, and sparsity-inducing regularized regression. These methods generally appeared to perform well. Several papers confirmed a number of causative SNPs in either the large number of simulation sets or the real data on chromosome 11. Findings were also reported for different SNPs, CpG sites, and SNP–CpG site interaction pairs.

Conclusions

In the simulation (200 replications), power appeared generally good for large interaction effects, but smaller effects will require larger studies or consortium collaboration for realizing a sufficient power.
  相似文献   

3.
Xia  Xiaoxuan  Weng  Haoyi  Men  Ruoting  Sun  Rui  Zee  Benny Chung Ying  Chong  Ka Chun  Wang  Maggie Haitian 《BMC genetics》2018,19(1):67-37

Background

Association studies using a single type of omics data have been successful in identifying disease-associated genetic markers, but the underlying mechanisms are unaddressed. To provide a possible explanation of how these genetic factors affect the disease phenotype, integration of multiple omics data is needed.

Results

We propose a novel method, LIPID (likelihood inference proposal for indirect estimation), that uses both single nucleotide polymorphism (SNP) and DNA methylation data jointly to analyze the association between a trait and SNPs. The total effect of SNPs is decomposed into direct and indirect effects, where the indirect effects are the focus of our investigation. Simulation studies show that LIPID performs better in various scenarios than existing methods. Application to the GAW20 data also leads to encouraging results, as the genes identified appear to be biologically relevant to the phenotype studied.

Conclusions

The proposed LIPID method is shown to be meritorious in extensive simulations and in real-data analyses.
  相似文献   

4.

Background

New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation andpenalties for multiple testing.

Methods

The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge.

Results

Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data.

Conclusions

The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.
  相似文献   

5.
Lent  Samantha  Xu  Hanfei  Wang  Lan  Wang  Zhe  Sarnowski  Chlo&#;  Hivert  Marie-France  Dupuis  Jos&#;e 《BMC genetics》2018,19(1):84-31

Background

Single-probe analyses in epigenome-wide association studies (EWAS) have identified associations between DNA methylation and many phenotypes, but do not take into account information from neighboring probes. Methods to detect differentially methylated regions (DMRs) (clusters of neighboring probes associated with a phenotype) may provide more power to detect associations between DNA methylation and diseases or phenotypes of interest.

Results

We proposed a novel approach, GlobalP, and perform comparisons with 3 methods—DMRcate, Bumphunter, and comb-p—to identify DMRs associated with log triglycerides (TGs) in real GAW20 data before and after fenofibrate treatment. We applied these methods to the summary statistics from an EWAS performed on the methylation data. Comb-p, DMRcate, and GlobalP detected very similar DMRs near the gene CPT1A on chromosome 11 in both the pre- and posttreatment data. In addition, GlobalP detected 2 DMRs before fenofibrate treatment in the genes ETV6 and ABCG1. Bumphunter identified several DMRs on chromosomes 1 and 20, which did not overlap with DMRs detected by other methods.

Conclusions

Our novel method detected the same DMR identified by two existing methods and detected two additional DMRs not identified by any of the existing methods we compared.
  相似文献   

6.

Background

Longitudinal data and repeated measurements in epigenome-wide association studies (EWAS) provide a rich resource for understanding epigenetics. We summarize 7 analytical approaches to the GAW20 data sets that addressed challenges and potential applications of phenotypic and epigenetic data. All contributions used the GAW20 real data set and employed either linear mixed effect (LME) models or marginal models through generalized estimating equations (GEE). These contributions were subdivided into 3 categories: (a) quality control (QC) methods for DNA methylation data; (b) heritability estimates pretreatment and posttreatment with fenofibrate; and (c) impact of drug response pretreatment and posttreatment with fenofibrate on DNA methylation and blood lipids.

Results

Two contributions addressed QC and identified large statistical differences with pretreatment and posttreatment DNA methylation, possibly a result of batch effects. Two contributions compared epigenome-wide heritability estimates pretreatment and posttreatment, with one employing a Bayesian LME and the other using a variance-component LME. Density curves comparing these studies indicated these heritability estimates were similar. Another contribution used a variance-component LME to depict the proportion of heritability resulting from a genetic and shared environment. By including environmental exposures as random effects, the authors found heritability estimates became more stable but not significantly different. Two contributions investigated treatment response. One estimated drug-associated methylation effects on triglyceride levels as the response, and identified 11 significant cytosine-phosphate-guanine (CpG) sites with or without adjusting for high-density lipoprotein. The second contribution performed weighted gene coexpression network analysis and identified 6 significant modules of at least 30 CpG sites, including 3 modules with topological differences pretreatment and posttreatment.

Conclusions

Four conclusions from this GAW20 working group are: (a) QC measures are an important consideration for EWAS studies that are investigating multiple time points or repeated measurements; (b) application of heritability estimates between time points for individual CpG sites is a useful QC measure for DNA methylation studies; (c) drug intervention demonstrated strong epigenome-wide DNA methylation patterns across the 2 time points; and (d) new statistical methods are required to account for the environmental contributions of DNA methylation across time. These contributions demonstrate numerous opportunities exist for the analysis of longitudinal data in future epigenetic studies.
  相似文献   

7.

Background

Increasingly available multilayered omics data on large populations has opened exciting analytic opportunities and posed unique challenges to robust estimation of causal effects in the setting of complex disease phenotypes. The GAW20 Causal Modeling Working Group has applied complementary approaches (eg, Mendelian randomization, structural equations modeling, Bayesian networks) to discover novel causal effects of genomic and epigenomic variation on lipid phenotypes, as well as to validate prior findings from observational studies.

Results

Two Mendelian randomization studies have applied novel approaches to instrumental variable selection in methylation data, identifying bidirectional causal effects of CPT1A and triglycerides, as well as of RNMT and C6orf42, on high-density lipoprotein cholesterol response to fenofibrate. The CPT1A finding also emerged in a Bayesian network study. The Mendelian randomization studies have implemented both existing and novel steps to account for pleiotropic effects, which were independently detected in the GAW20 data via a structural equation modeling approach. Two studies estimated indirect effects of genomic variation (via DNA methylation and/or correlated phenotypes) on lipid outcomes of interest. Finally, a novel weighted R2 measure was proposed to complement other causal inference efforts by controlling for the influence of outlying observations.

Conclusions

The GAW20 contributions illustrate the diversity of possible approaches to causal inference in the multi-omic context, highlighting the promises and assumptions of each method and the benefits of integrating both across methods and across omics layers for the most robust and comprehensive insights into disease processes.
  相似文献   

8.

Background

The GAW20 group formed on the theme of methods for association analyses of repeated measures comprised 4sets of investigators. The provided “real” data set included genotypes obtained from a human whole-genome association study based on longitudinal measurements of triglycerides (TGs) and high-density lipoprotein in addition to methylation levels before and after administration of fenofibrate. The simulated data set contained 200 replications of methylation levels and posttreatment TGs, mimicking the real data set.

Results

The different investigators in the group focused on the statistical challenges unique to family-based association analyses of phenotypes measured longitudinally and applied a wide spectrum of statistical methods such as linear mixed models, generalized estimating equations, and quasi-likelihood–based regression models. This article discusses the varying strategies explored by the group’s investigators with the common goal of improving the power to detect association with repeated measures of a phenotype.

Conclusions

Although it is difficult to identify a common message emanating from the different contributions because of the diversity in the issues addressed, the unifying theme of the contributions lie in the search for novel analytic strategies to circumvent the limitations of existing methodologies to detect genetic association.
  相似文献   

9.

Background

Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA.

Results

We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods.

Conclusions

The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.
  相似文献   

10.
Park  Jun Young  Wu  Chong  Pan  Wei 《BMC genetics》2018,19(1):68-43

Background

We propose a gene-level association test that accounts for individual relatedness and population structures in pedigree data in the framework of linear mixed models (LMMs). Our method data-adaptively combines the results across a class of score-based tests, only requiring fitting a single null model (under the null hypothesis) for the whole genome, thereby being computationally efficient.

Results

We applied our approach to test for association with the high-density lipoprotein (HDL) ratio of post- and pretreatments in GAW20 data. Using the LMM similar to that used by Aslibekyan et al. (PLos One, 7:48663, 2012), our method identified 2 nearly significant genes (APOA5 and ZNF259) near rs964184, whereas neither the other gene-level tests nor the standard test on each individual single-nucleotide polymorphism (SNP) detected any significant gene in a genome-wide scan.

Conclusions

Gene-level association testing can be a complementary approach to the SNP-level association testing and our method is adaptive and efficient compared to several other existing gene-level association tests.
  相似文献   

11.

Background

Transgenerational epigenetic inheritance has been posited as a possible contributor to the observed heritability of metabolic syndrome (MetS). Yet the extent to which estimates of epigenetic inheritance for DNA methylation sites are inflated by environmental and genetic covariance within families is still unclear. We applied current methods to quantify the environmental and genetic contributors to the observed heritability and familial correlations of four previously associated MetS methylation sites at three genes (CPT1A, SOCS3 and ABCG1) using real data made available through the GAW20.

Results

Our findings support the role of both shared environment and genetic variation in explaining the heritability of MetS and the four MetS cytosine-phosphate-guanine (CpG) sites, although the resulting heritability estimates were indistinguishable from one another. Familial correlations by type of relative pair generally followed our expectation based on relatedness, but in the case of sister and parent pairs we observed nonsignificant trends toward greater correlation than expected, as would be consistent with the role of shared environmental factors in the inflation of our estimated correlations.

Conclusions

Our work provides an interesting and flexible statistical framework for testing models of epigenetic inheritance in the context of human family studies. Future work should endeavor to replicate our findings and advance these methods to more robustly describe epigenetic inheritance patterns in human populations.
  相似文献   

12.

Background

This paper summarizes the contributions from the Genome-wide Association Study group (GWAS group) of the GAW20. The GWAS group contributions focused on topics such as association tests, phenotype imputation, and application of empirical kinships. The goals of the GWAS group contributions were varied. A real or a simulated data set based on the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study was employed by different methods. Different outcomes and covariates were considered, and quality control procedures varied throughout the contributions.

Results

The consideration of heritability and family structure played a major role in some contributions. The inclusion of family information and adaptive weights based on data were found to improve power in genome-wide association studies. It was proven that gene-level approaches are more powerful than single-marker analysis. Other contributions focused on the comparison between pedigree-based kinship and empirical kinship matrices, and investigated similar results in heritability estimation, association mapping, and genomic prediction. A new approach for linkage mapping of triglyceride levels was able to identify a novel linkage signal.

Conclusions

This summary paper reports on promising statistical approaches and findings of the members of the GWAS group applied on real and simulated data which encompass the current topics of epigenetic and pharmacogenomics.
  相似文献   

13.

Background

In studies with multi-omics data available, there is an opportunity to investigate interdependent mechanisms of biological causality. The GAW20 data set includes both DNA genotype and methylation measures before and after fenofibrate treatment. Using change in triglyceride (TG) levels pre- to posttreatment as outcome, we present a mediation analysis that incorporates methylation. This approach allows us to simultaneously consider a mediation hypothesis that genotype affects change in TG level by means of its effect on methylation, and an interaction hypothesis that the effect of change in methylation on change in TG levels differs by genotype. We select 322 single-nucleotide polymorphism–cytosine-phosphate-guanine (SNP-CpG) site pairs for mediation analysis on the basis of proximity and marginal genome-wide association study (GWAS) and epigenome-wide association study (EWAS) significance, and present results from the real-data sample of 407 individuals with complete genotype, methylation, TG levels, and covariate data.

Results

We identified 3 SNP-CpG site pairs with significant interaction effects at a Bonferroni-corrected significance threshold of 1.55E-4. None of the analyzed sites showed significant evidence of mediation. Power analysis by simulation showed that a sample size of at least 19,500 is needed to detect nominally significant indirect effects with true effect sizes equal to the point estimates at the locus with strongest evidence of mediation.

Conclusions

These results suggest that there is stronger evidence for interaction between genotype and methylation on change in triglycerides than for methylation mediating the effect of genotype.
  相似文献   

14.
Shen  Xiaoxi  Lu  Qing 《BMC genetics》2018,19(1):71-54

Background

Rapidly evolving high-throughput technology has made it cost-effective to collect multilevel omic data in clinical and biological studies. Different types of omic data collected from these studies provide both shared and complementary information, and can be integrated into association analysis to enhance the power of identifying novel disease-associated biomarkers. To model the joint effect of genetic markers and DNA methylation on the phenotype of interest, we propose a joint conditional autoregressive (JCAR) model. A linear score test is used for hypothesis testing and the corresponding p value can be obtained using the Davies method.

Results

The JCAR model was applied to the GAW20 data from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. In our application of the JCAR model, we consider a baseline model and a full model. In the baseline model, we consider 3 different scenarios: a model with only genetic information, a model with only DNA methylation information at visit 2, and a model using both genetic and DNA methylation information at visit 2. For the full model, we consider both genetic and DNA methylation information at visit 2 and visit 4. The top 10 significant genes are reported for each model. Based on the results, we found that the gene MYO3B was significant as long as the methylation information was considered in the analysis.

Conclusions

JCAR is a useful tool for joint association analysis of genetic and epigenetic data. It is easy to implement and is computationally efficient. It can also be extended to analyze other types of omic data.
  相似文献   

15.

Background

DNA methylation has been identified to be widely associated to complex diseases. Among biological platforms to profile DNA methylation in human, the Illumina Infinium HumanMethylation450 BeadChip (450K) has been accepted as one of the most efficient technologies. However, challenges exist in analysis of DNA methylation data generated by this technology due to widespread biases.

Results

Here we proposed a generalized framework for evaluating data analysis methods for Illumina 450K array. This framework considers the following steps towards a successful analysis: importing data, quality control, within-array normalization, correcting type bias, detecting differentially methylated probes or regions and biological interpretation.

Conclusions

We evaluated five methods using three real datasets, and proposed outperform methods for the Illumina 450K array data analysis. Minfi and methylumi are optimal choice when analyzing small dataset. BMIQ and RCP are proper to correcting type bias and the normalized result of them can be used to discover DMPs. R package missMethyl is suitable for GO term enrichment analysis and biological interpretation.
  相似文献   

16.

Background

Integrative analysis on multi-omics data has gained much attention recently. To investigate the interactive effect of gene expression and DNA methylation on cancer, we propose a directed random walk-based approach on an integrated gene-gene graph that is guided by pathway information.

Methods

Our approach first extracts a single pathway profile matrix out of the gene expression and DNA methylation data by performing the random walk over the integrated graph. We then apply a denoising autoencoder to the pathway profile to further identify important pathway features and genes. The extracted features are validated in the survival prediction task for breast cancer patients.

Results

The results show that the proposed method substantially improves the survival prediction performance compared to that of other pathway-based prediction methods, revealing that the combined effect of gene expression and methylation data is well reflected in the integrated gene-gene graph combined with pathway information. Furthermore, we show that our joint analysis on the methylation features and gene expression profile identifies cancer-specific pathways with genes related to breast cancer.

Conclusions

In this study, we proposed a DRW-based method on an integrated gene-gene graph with expression and methylation profiles in order to utilize the interactions between them. The results showed that the constructed integrated gene-gene graph can successfully reflect the combined effect of methylation features on gene expression profiles. We also found that the selected features by DA can effectively extract topologically important pathways and genes specifically related to breast cancer.
  相似文献   

17.

Background

The identification of prognostic biomarkers for cancer patients is essential for cancer research. These days, DNA methylation has been proved to be associated with cancer prognosis. However, there are few methods which identify the prognostic markers based on DNA methylation data systematically, especially considering the interaction among DNA methylation sites.

Methods

In this paper, we first evaluated the stabilities of microRNA, mRNA, and DNA methylation data in prognosis of cancer. After that, a rank-based method was applied to construct a DNA methylation interaction network. In this network, nodes with the largest degrees (10% of all the nodes) were selected as hubs. Cox regression was applied to select the hubs as prognostic signature. In this prognostic signature, DNA methylation levels of each DNA methylation site are correlated with the outcomes of cancer patients. After obtaining these prognostic genes, we performed the survival analysis in the training group and the test group to verify the reliability of these genes.

Results

We applied our method in three cancers (ovarian cancer, breast cancer and Glioblastoma Multiforme).In all the three cancers, there are more common ones of prognostic genes selected from different samples in DNA methylation data, compared with gene expression data and miRNA expression data, which indicates the DNA methylation data may be more stable in cancer prognosis. Power-law distribution fitting suggests that the DNA methylation interaction networks are scale-free. And the hubs selected from the three networks are all enriched by cancer related pathways. The gene signatures were obtained for the three cancers respectively, and survival analysis shows they can distinguish the outcomes of tumor patients in both the training data sets and test data sets, which outperformed the control signatures.

Conclusions

A computational method was proposed to construct DNA methylation interaction network and this network could be used to select prognostic signatures in cancer.
  相似文献   

18.
19.

Background

Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis.

Methods

Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing.

Results

The main features and advantages of this protocol are:
  • An optimized method for extracting good quality DNA from FFPE tissues.
  • An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue.
  • Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing.

Conclusions

We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号