首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

2.
3.
Phytoplankton are the main source of energy and omega‐3 (n‐3) long‐chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n‐3 long‐chain polyunsaturated FA (LC‐PUFA) and an increase in omega‐6 FA and saturated FA. Based on linear regression models, we predict that global n‐3 LC‐PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n‐3 LC‐PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.  相似文献   

4.
Intravenous immunoglobulin (IVIG) contains anti‐amyloid‐β antibodies as well as antibodies providing immunomodulatory effects that may modify chronic inflammation in Alzheimer's disease. Answers to important questions about IVIG transport into the central nervous system and assessments of any impact amyloid‐β has on this transport can be provided by in vitro models of the blood–brain barrier. In this study, amyloid‐β[1‐42] was pre‐aggregated into fibrillar or oligomeric structures, and various concentrations were incubated in the brain side of the blood–brain barrier model, followed by IVIG administration in the blood side at the therapeutically relevant concentrations of 5 and 20 mg/mL. IVIG accumulated in the brain side at physiologically relevant levels, with amyloid‐β pre‐incubation increasing IVIG accumulation. The increased transport effect was dependent on amyloid‐β structural form, amyloid‐β concentration, and IVIG dose. IVIG was found to decrease monocyte chemotactic protein‐1 levels 6.5–18% when low amyloid‐β levels were present and increase levels 4.2–23% when high amyloid‐β levels were present. Therefore, the presence, concentration, and structure of amyloid‐β plays an important role in the effect of IVIG therapy in the brain.

  相似文献   


5.
The blood–brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14‐cis‐eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n ? 6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell® inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2), an eicosanoid known to facilitate opening of the blood–brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein‐labeled dextran from apical to basolateral medium. ARA‐mediated permeability was attenuated by specific cyclooxygenase‐2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA‐mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA.

  相似文献   


6.
Monoclonal antibodies (MAb) directed against the Abeta amyloid peptide of Alzheimer's disease (AD) are potential new therapies for AD, since these antibodies disaggregate brain amyloid plaque. However, the MAb is not transported across the blood–brain barrier (BBB). To enable BBB transport, a single chain Fv (ScFv) antibody against the Abeta peptide of AD was re‐engineered as a fusion protein with the MAb against the human insulin receptor (HIR). The HIRMAb acts as a molecular Trojan horse to ferry the ScFv therapeutic antibody across the BBB. Chinese hamster ovary (CHO) cells were stably transfected with a tandem vector encoding the heavy and light chains of the HIRMAb–ScFv fusion protein. A high secreting line was isolated following methotrexate amplification and dilutional cloning. The HIRMAb–ScFv fusion protein in conditioned serum‐free medium was purified by protein A affinity chromatography. The fusion protein was stable as a liquid formulation, and retained high‐affinity binding of both the HIR and the Abeta amyloid peptide. The HIRMAb–ScFv fusion protein was radiolabeled with the 125I‐Bolton–Hunter reagent, followed by measurement of the pharmacokinetics of plasma clearance and brain uptake in the adult Rhesus monkey. The HIRMAb–ScFv fusion protein was rapidly cleared from plasma and was transported across the primate BBB in vivo. In conclusion, the HIRMAb–ScFv fusion protein is a new class of antibody‐based therapeutic for AD that has been specifically engineered to cross the human BBB. Biotechnol. Bioeng. 2010; 105: 627–635. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
Depression may be associated with impaired membrane PUFA composition, especially decreased n-3 PUFA. This assumption has not been tested at the level of brain tissue. Moreover, most studies were confounded by dietary variability. We examined the FA composition of selected brain areas in an animal model of depression, the Flinders Sensitive Line (FSL) rat, and compared the findings with those in controls fed identical diets. In all brain regions studied, the concentration of arachidonic acid (AA) was significantly higher in the FSL rats: in the hypothalamus by 21%, in the nucleus accumbens by 24%, in the prefrontal cortex by 31%, and in the striatum by 23%. No significant differences were observed for n-3 PUFA or for the saturated and monounsaturated FAs. Our results confirm the existence of altered brain PUFA composition in an animal model of depression. The finding of increased AA, an n-6 PUFA, rather than decreased n-3 PUFA, emphasizes the importance of both PUFA families in the pathophysiological processes underlying depression. The FSL rat is a useful tool for further elucidation of the FA disturbances in depression.  相似文献   

10.
Heart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF. This raised several questions regarding ω3-concentration-dependent cardioprotection, the specific role of EPA and DHA, and the relationship between prevention of fibrosis and contractile dysfunction. To achieve more clinically relevant ω3-levels and test individual ω3-PUFAs, we shortened the ω3-diet regimen and used EPA- and DHA-specific diets to examine remodeling following TAC. The shorter diet regimen produced ω3-PUFA levels closer to Western clinics. Further, EPA, but not DHA, prevented fibrosis following TAC. However, neither ω3-PUFA prevented contractile dysfunction, perhaps due to reduced uptake of ω3-PUFA. Interestingly, EPA did not accumulate in cardiac fibroblasts. However, FFA receptor 4, a G protein-coupled receptor for ω3-PUFAs, was sufficient and required to block transforming growth factor β1-fibrotic signaling in cultured cardiac fibroblasts, suggesting a novel mechanism for EPA. In summary, EPA-mediated prevention of fibrosis could represent a novel therapy for HFpEF.  相似文献   

11.
MALDI imaging mass spectrometry (IMS) was used to characterize lipid species within sections of human eyes. Common phospholipids that are abundant in most tissues were not highly localized and observed throughout the accessory tissue, optic nerve, and retina. Triacylglycerols were highly localized in accessory tissue, whereas sulfatide and plasmalogen glycerophosphoethanolamine (PE) lipids with a monounsaturated fatty acid were found enriched in the optic nerve. Additionally, several lipids were associated solely with the inner retina, photoreceptors, or retinal pigment epithelium (RPE); a plasmalogen PE lipid containing DHA (22:6), PE(P-18:0/22:6), was present exclusively in the inner retina, and DHA-containing glycerophosphatidylcholine (PC) and PE lipids were found solely in photoreceptors. PC lipids containing very long chain (VLC)-PUFAs were detected in photoreceptors despite their low abundance in the retina. Ceramide lipids and the bis-retinoid, N-retinylidene-N-retinylethanolamine, was tentatively identified and found only in the RPE. This MALDI IMS study readily revealed the location of many lipids that have been associated with degenerative retinal diseases. Complex lipid localization within retinal tissue provides a global view of lipid organization and initial evidence for specific functions in localized regions, offering opportunities to assess their significance in retinal diseases, such as macular degeneration, where lipids have been implicated in the disease process.  相似文献   

12.
13.
Accumulating evidence indicates that abnormal deposition of amyloid‐β (Aβ) peptide in the brain is responsible for endothelial cell damage and consequently leads to blood–brain barrier (BBB) leakage. However, the mechanisms underlying BBB disruption are not well described. We employed an monolayer BBB model comprising bEnd.3 cell and found that BBB leakage was induced by treatment with Aβ1–42, and the levels of tight junction (TJ) scaffold proteins (ZO‐1, Claudin‐5, and Occludin) were decreased. Through comparisons of the effects of the different components of Aβ1–42, including monomer (Aβ1–42‐Mono), oligomer (Aβ1–42‐Oligo), and fibril (Aβ1–42‐Fibril), our data confirmed that Aβ1–42‐Oligo is likely to be the most important damage factor that results in TJ damage and BBB leakage in Alzheimer's disease. We found that the incubation of bEnd.3 cells with Aβ1–42 significantly up‐regulated the level of receptor for advanced glycation end‐products (RAGE). Co‐incubation of a polyclonal antibody to RAGE and Aβ1–42‐Oligo in bEnd.3 cells blocked RAGE suppression of Aβ1–42‐Oligo‐induced alterations in TJ scaffold proteins and reversed Aβ1–42‐Oligo‐induced up‐regulation of RAGE, matrix metalloproteinase (MMP)‐2, and MMP‐9. Furthermore, we found that these effects induced by Aβ1–42‐Oligo treatment were effectively suppressed by knockdown of RAGE using small interfering RNA (siRNA) transfection. We also found that GM 6001, a broad‐spectrum MMP inhibitor, partially reversed the Aβ1–42‐Oligo‐induced inhibitor effects in bEnd.3 cells. Thus, these results suggested that RAGE played an important role in Aβ‐induced BBB leakage and alterations of TJ scaffold proteins, through a mechanism that involved up‐regulation of MMP‐2 and MMP‐9.

  相似文献   


14.
Short synthetic peptides homologous to the central region of Aβ but bearing proline residues as β‐sheet blockers have been shown in vitro to bind to Aβ with high affinity, partially inhibit Aβ fibrillogenesis, and redissolve preformed fibrils. While short peptides have been used extensively as therapeutic drugs in medicine, two important problems associated with their use in central nervous system diseases have to be addressed: (a) rapid proteolytic degradation in plasma, and (b) poor blood–brain barrier (BBB) permeability. Recently, we have demonstrated that the covalent modification of proteins with the naturally occurring polyamines significantly increases their permeability at the BBB. We have extended this technology to iAβ11, an 11‐residue β‐sheet breaker peptide that inhibits Aβ fibrillogenesis, by covalently modifying this peptide with the polyamine, putrescine (PUT), and evaluating its plasma pharmacokinetics and BBB permeability. After a single intravenous bolus injection in rats, both 125I‐YiAβ11 and 125I‐PUT‐YiAβ11 showed rapid degradation in plasma as determined by trichloroacetic acid (TCA) precipitation and paper chromatography. By switching to the all d ‐enantiomers of YiAβ11 and PUT‐YiAβ11, significant protection from degradation by proteases in rat plasma was obtained with only 1.9% and 5.7% degradation at 15 min after intravenous bolus injection, respectively. The permeability coefficient × surface area product at the BBB was five‐ sevenfold higher in the cortex and hippocampus for the 125I‐PUT‐d ‐YiAβ11 compared to the 125I‐d ‐YiAβ11, with no significant difference in the residual plasma volume. In vitro assays showed that PUT‐d ‐YiAβ11 retains its ability to partially inhibit Aβ fibrillogenesis and dissolve preformed amyloid fibrils. Because of its five‐ to sevenfold increase in permeability at the BBB and its resistance to proteolysis in the plasma, this polyamine‐modified β‐sheet breaker peptide may prove to be an effective inhibitor of amyloidogenesis in vivo and, hence, an important therapy for Alzheimer's disease. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 371–382, 1999  相似文献   

15.
Eicosapentaenoic acid (EPA, 20:5n-3) is being explored as a therapy in neurological diseases and disorders. Although it is known that palmitate is the most abundant fatty acid in the brain while EPA is one of the lowest, the mechanism by which the brain maintains this balance is unclear. Therefore, to trace the metabolism of these fatty acids in the brain, (14) C-palmitate or (14) C-EPA was administered via intracerebroventricular infusion to rats. From 4 to 128 days post-infusion, brains were collected after head-focused, high-energy microwave irradiation for biochemical analysis. At day 4 post-infusion, 57% (82 ± 26 nCi) of the total phospholipid radioactivity in (14) C-palmitate-infused brains was intact palmitate; whereas in (14) C-EPA-infused brains, 9% (2 ± 0.9 nCi) of the radioactivity was intact EPA. The half-life of esterified (14) C-palmitate and (14) C-EPA was 32 ± 4 (2% loss per day) and 5 ± 0.2 days (14% loss per day), respectively. Radioactivity was also detected in other saturates, monounsaturates, and cholesterol, suggesting that the infused radiolabeled fatty acids were β-oxidized. In conclusion, the low concentration of EPA in brain phospholipids may be the result of extensive metabolism of EPA, in part by β-oxidation, upon entry into the brain and upon de-esterification from phospholipids.  相似文献   

16.
The blood–brain barrier (BBB) is composed of brain capillary endothelial cells and has an important role in maintaining homeostasis of the brain separating the blood from the parenchyma of the central nervous system (CNS). It is widely known that disruption of the BBB occurs in various neurodegenerative diseases, including Alzheimer's disease (AD). Annexin A1 (ANXA1), an anti‐inflammatory messenger, is expressed in brain endothelial cells and regulates the BBB integrity. However, its role and mechanism for protecting BBB in AD have not been identified. We found that β‐Amyloid 1‐42 (Aβ42)‐induced BBB disruption was rescued by human recombinant ANXA1 (hrANXA1) in the murine brain endothelial cell line bEnd.3. Also, ANXA1 was decreased in the bEnd.3 cells, the capillaries of 5XFAD mice, and the human serum of patients with AD. To find out the mechanism by which ANXA1 recovers the BBB integrity in AD, the RhoA‐ROCK signaling pathway was examined in both Aβ42‐treated bEnd.3 cells and the capillaries of 5XFAD mice as RhoA was activated in both cases. RhoA inhibitors alleviated Aβ42‐induced BBB disruption and constitutively overexpressed RhoA‐GTP (active form of RhoA) attenuated the protective effect of ANXA1. When pericytes were cocultured with bEnd.3 cells, Aβ42‐induced RhoA activation of bEnd.3 cells was inhibited by the secretion of ANXA1 from pericytes. Taken together, our results suggest that ANXA1 restores Aβ42‐induced BBB disruption through inhibition of RhoA‐ROCK signaling pathway and we propose ANXA1 as a therapeutic reagent, protecting against the breakdown of the BBB in AD.  相似文献   

17.
The breakdown of the blood–brain barrier, which develops early in Alzheimer''s disease (AD), contributes to cognitive impairment. Exercise not only reduces the risk factors for AD but also confers direct protection against cognitive decline. However, the exact molecular mechanisms remain elusive, particularly whether exercise can liberate the function of the blood–brain barrier. Here, we demonstrate that long‐term exercise promotes the clearance of brain amyloid‐β by improving the function of the blood–brain barrier in 5XFAD mice. Significantly, treating primary brain pericytes or endothelial cells with exosomes isolated from the brain of exercised 5XFAD mice improves cell proliferation and upregulates PDGFRβ, ZO‐1, and claudin‐5. Moreover, exosomes isolated from exercised mice exhibit significant changes in miR‐532‐5p. Administration or transfection of miR‐532‐5p to sedentary mice or primary brain pericytes and endothelial cells reproduces the improvement of blood–brain barrier function. Exosomal miR‐532‐5p targets EPHA4, and accordingly, expression of EphA4 is decreased in exercised mice and miR‐532‐5p overexpressed mice. A specific siRNA targeting EPHA4 recapitulates the effects on blood–brain barrier‐associated cells observed in exercised 5XFAD mice. Overall, our findings suggest that exosomes released by the brain contain a specific miRNA that is altered by exercise and has an impact on blood–brain barrier function in AD.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV‐1) infection of the central nervous system (CNS) affects cross‐talk between the individual cell types of the neurovascular unit, which then contributes to disruption of the blood–brain barrier (BBB) and the development of neurological dysfunctions. Although the toxicity of HIV‐1 on neurons, astrocytes and brain endothelial cells has been widely studied, there are no reports addressing the influence of HIV‐1 on pericytes. Therefore, the purpose of this study was to evaluate whether or not pericytes can be infected with HIV‐1 and how such an infection affects the barrier function of brain endothelial cells. Our results indicate that human brain pericytes express the major HIV‐1 receptor CD4 and co‐receptors CXCR4 and CCR5. We also determined that HIV‐1 can replicate, although at a low level, in human brain pericytes as detected by HIV‐1 p24 ELISA. Pericytes were susceptible to infection with both the X4‐tropic NL4‐3 and R5‐tropic JR‐CSF HIV‐1 strains. Moreover, HIV‐1 infection of pericytes resulted in compromised integrity of an in vitro model of the BBB. These findings indicate that human brain pericytes can be infected with HIV‐1 and suggest that infected pericytes are involved in the progression of HIV‐1‐induced CNS damage.  相似文献   

19.
Inheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late‐onset Alzheimer's disease (AD). Studies have shown that the binding between apoE and amyloid‐β (Aβ) peptides occurs at residues 244–272 of apoE and residues 12–28 of Aβ. ApoE4 has been implicated in promoting Aβ deposition and impairing clearance of Aβ. We hypothesized that blocking the apoE/Aβ interaction would serve as an effective new approach to AD therapy. We have previously shown that treatment with Aβ12‐28P can reduce amyloid plaques in APP/PS1 transgenic (Tg) mice and vascular amyloid in TgSwDI mice with congophilic amyloid angiopathy. In the present study, we investigated whether the Aβ12‐28P elicits a therapeutic effect on tau‐related pathology in addition to amyloid pathology using old triple transgenic AD mice (3xTg, with PS1M146V, APPSwe and tauP30IL transgenes) with established pathology from the ages of 21 to 26 months. We show that treatment with Aβ12‐28P substantially reduces tau pathology both immunohistochemically and biochemically, as well as reducing the amyloid burden and suppressing the activation of astrocytes and microglia. These affects correlate with a behavioral amelioration in the treated Tg mice.

  相似文献   


20.
We hypothesized that reduction/loss of very long chain PUFAs (VLC-PUFAs) due to mutations in the ELOngase of very long chain fatty acid-4 (ELOVL4) protein contributes to retinal degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3) and age-related macular degeneration; hence, increasing VLC-PUFA in the retina of these patients could provide some therapeutic benefits. Thus, we tested the efficiency of elongation of C20-C22 PUFA by the ELOVL4 protein to determine which substrates are the best precursors for biosynthesis of VLC-PUFA. The ELOVL4 protein was expressed in pheochromocytoma cells, while green fluorescent protein-expressing and nontransduced cells served as controls. The cells were treated with 20:5n3, 22:6n3, and 20:4n6, either individually or in equal combinations. Both transduced and control cells internalized and elongated the supplemented FAs to C22-C26 precursors. Only ELOVL4-expressing cells synthesized C28-C38 VLC-PUFA from these precursors. In general, 20:5n3 was more efficiently elongated to VLC-PUFA in the ELOVL4-expressing cells, regardless of whether it was in combination with 22:6n3 or with 20:4n6. In each FA treatment group, C34 and C36 VLC-PUFAs were the predominant VLC-PUFAs in the ELOVL4-expressing cells. In summary, 20:5n3, followed by 20:4n6, seems to be the best precursor for boosting the synthesis of VLC-PUFA by ELOVL4 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号