首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carotenoid biosynthesis is highly conserved and well characterized up to the synthesis of β‐carotene. Conversely, the synthesis of astaxanthin from β‐carotene is less well characterized. Regardless, astaxanthin is a highly sought natural product, due to its various industrial applications and elevated antioxidant capacity. In this article, 12 β‐carotene ketolase and 4 β‐carotene hydroxylase genes, isolated from 5 cyanobacterial species, are investigated for their function, and potential for microbial astaxanthin synthesis. Further, this in vivo comparison identifies and applies the most promising genetic elements within a dual expression vector, which is maintained in Escherichia coli. Here, combined overexpression of individual β‐carotene ketolase and β‐carotene hydroxylase genes, within a β‐carotene accumulating host, enables a 23.5‐fold improvement in total carotenoid yield (1.99 mg g?1), over the parental strain, with >90% astaxanthin. Biotechnol. Bioeng. 2009;103: 944–955. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
The cyanobacterium Synechocystis sp. PCC 6803 is a model species commonly employed for biotechnological applications. It is naturally able to accumulate zeaxanthin (Zea) and echinenone (Ech), but not astaxanthin (Asx), which is the highest value carotenoid produced by microalgae, with a wide range of applications in pharmaceutical, cosmetics, food and feed industries. With the aim of finding an alternative and sustainable biological source for the production of Asx and other valuable hydroxylated and ketolated intermediates, the carotenoid biosynthetic pathway of Synechocystis sp. PCC 6803 has been engineered by introducing the 4,4′ β‐carotene oxygenase (CrtW) and 3,3′ β‐carotene hydroxylase (CrtZ) genes from Brevundimonas sp. SD‐212 under the control of a temperature‐inducible promoter. The expression of exogenous CrtZ led to an increased accumulation of Zea at the expense of Ech, while the expression of exogenous CrtW promoted the production of non‐endogenous canthaxanthin and an increase in the Ech content with a concomitant strong reduction of β‐carotene (β‐car). When both Brevundimonas sp. SD‐212 genes were coexpressed, significant amounts of non‐endogenous Asx were obtained accompanied by a strong decrease in β‐car content. Asx accumulation was higher (approximately 50% of total carotenoids) when CrtZ was cloned upstream of CrtW, but still significant (approximately 30%) when the position of genes was inverted. Therefore, the engineered strains constitute a useful tool for investigating the ketocarotenoid biosynthetic pathway in cyanobacteria and an excellent starting point for further optimisation and industrial exploitation of these organisms for the production of added‐value compounds.  相似文献   

3.
β‐Carotene is overproduced in the alga Dunaliella salina in response to high light intensities. We have studied the effects of a sudden light increase on carotenoid and fatty acid metabolism using a flat panel photobioreactor that was run in turbidostat mode to ensure a constant light regime throughout the experiments. Upon the shift to an increased light intensity, β‐carotene production commenced immediately. The first 4 h after induction were marked by constant intracellular levels of β‐carotene (2.2 g LCV?1), which resulted from identical increases in the production rates of cell volume and β‐carotene. Following this initial phase, β‐carotene productivity continued to increase while the cell volume productivity dropped. As a result, the intracellular β‐carotene concentration increased reaching a maximum of 17 g LCV?1 after 2 days of light stress. Approximately 1 day before that, the maximum β‐carotene productivity of 30 pg cell?1 day?1 (equivalent to 37 mg LRV?1 day?1) was obtained, which was about one order of magnitude larger than the average productivity reported for a commercial β‐carotene production facility, indicating a vast potential for improvement. Furthermore, by studying the light‐induced changes in both β‐carotene and fatty acid metabolism, it appeared that carotenoid overproduction was associated with oil globule formation and a decrease in the degree of fatty acid unsaturation. Our results indicate that cellular β‐carotene accumulation in D. salina correlates with accumulation of specific fatty acid species (C16:0 and C18:1) rather than with total fatty acid content. Biotechnol. Bioeng. 2010;106: 638–648. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
β‐Carotene and astaxanthin are two carotenoids with powerful antioxidant properties, but the binding mechanisms of β‐carotene/astaxanthin to proteases remain unclear. In this study, the interaction of these two carotenoids with trypsin and pepsin was investigated using steady‐state and time‐resolved fluorescence measurements, synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and circular dichroism (CD) spectroscopy. The experimental results indicated that the quenching mechanisms of trypsin/pepsin by the two carotenoids are static processes. The binding constants of trypsin and pepsin with these two carotenoids are in the following order: astaxanthin–trypsin > astaxanthin–pepsin > β‐carotene–trypsin > β‐carotene–pepsin, respectively. Thermodynamic investigations revealed that the interaction between the two carotenoids and trypsin/pepsin is synergistically driven by enthalpy and entropy, and hydrophobic forces and electrostatic attraction have a significant role in the reactions. In addition, as shown by synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and CD, the two carotenoids may induce conformational and microenvironmental changes in trypsin/pepsin. The study provides an accurate and full basic data for clarifying the binding mechanisms of the two carotenoids with trypsin/pepsin and is helpful in understanding their effect on protein function and their biological activity in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Column and thin‐layer chromatography revealed the presence of the following carotenoids in thalli of Dirinaria applanata from 13 different sites: α‐carotene, β‐carotene, β‐cryptoxanthin, lutein, 3′‐epilutein, zeaxanthin, antheraxanthin, canthaxanthin, astaxanthin, violaxanthin, mutatoxanthin, neoxanthin, capsochrome, fucoxanthinol, paracentrone and apo‐6′‐lycopenal. In the thalli of all 13 specimens of Dirinaria applanata β‐carotene, lutein, astaxanthin and violaxanthin were found as constant carotenoids. The total content of carotenoids ranged from 21.0 (from Mexico) to 54.9 μg g−1 dry weight (from Antilles).  相似文献   

6.
7.
The diverse colours of mature pepper (Capsicum spp.) fruit result from the accumulation of different carotenoids. The carotenoid biosynthetic pathway has been well elucidated in Solanaceous plants, and analysis of candidate genes involved in this process has revealed variations in carotenoid biosynthetic genes in Capsicum spp. However, the allelic variations revealed by previous studies could not fully explain the variation in fruit colour in Capsicum spp. due to technical difficulties in detecting allelic variation in multiple candidate genes in numerous samples. In this study, we uncovered allelic variations in six carotenoid biosynthetic genes, including phytoene synthase (PSY1, PSY2), lycopene β‐cyclase, β‐carotene hydroxylase, zeaxanthin epoxidase and capsanthin‐capsorubin synthase (CCS) genes, in 94 pepper accessions by single‐molecule real‐time (SMRT) sequencing. To investigate the relationship between allelic variations in the candidate genes and differences in fruit colour, we performed ultra‐performance liquid chromatography analysis using 43 accessions representing each allelic variation. Different combinations of dysfunctional mutations in PSY1 and CCS could explain variation in the compositions and levels of carotenoids in the accessions examined in this study. Our results demonstrate that SMRT sequencing technology can be used to rapidly identify allelic variation in target genes in various germplasms. The newly identified allelic variants will be useful for pepper breeding and for further analysis of carotenoid biosynthesis pathways.  相似文献   

8.
9.
Insects are known to be poor sources of preformed vitamin A, leading to the speculation that insectivorous species, including reptiles, may be able to convert carotenoid precursors to meet dietary requirements for this nutrient. This study was conducted to indirectly evaluate carotenoid and vitamin A metabolism in the panther chameleon (Furcifer pardalis). Eggs were obtained from females in Madagascar that were yolked either early or later in the breeding season, and carotenoid (α‐ and β‐carotene, cryptoxanthin, lutein/zeaxanthin, and lycopene), vitamin A, and vitamin E concentrations were measured in egg contents in early, middle, or late embryonic development. An overall trend of decreased nutrient concentration as eggs matured (from egg period 1 (yolks) to egg period 3 (embryos)) was seen within both clutch groups. The season of clutch deposition was a significant influence on egg weight, α‐carotene, and lutein/zeaxanthin concentrations, but on no other nutrients. Chameleon yolks contained considerably higher levels of carotenoids than levels previously reported from two viviparous lizard species, and β‐carotene concentrations were of the same magnitude as reported in grazing tortoises. β‐Carotene and β‐cryptoxanthin were the predominant carotenoids in yolk and embryos, comprising about 95% of total carotenoids detected. Measurable concentrations of retinol at all stages of egg development in the chameleons suggests effective conversion from carotenoid precursors, with concentrations similar to those measured in other lizard eggs. Information from eggs obtained in native habitats may provide baseline data on nutrient interactions to improve and optimize captive dietary management; preliminary data suggest that micronutrient environments may vary over the protracted breeding season, with possible implications for embryo health and survival. Zoo Biol 21:295–303, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

10.
11.
12.
The β‐carotene embedded amylose microparticles (BC‐AmMPs) were prepared in one‐step by utilizing the unique catalytic activity of amylosucrase from Deinococcus geothermalis (DgAS), which synthesizes linear amylose chains using sucrose as the sole substrate. Synthesized amylose chains self‐assembled with β‐carotene to form well‐defined spherical microparticles with an encapsulation yield of 65%. The BC‐AmMPs produced (average diameter ~8 µm) were bright orange due to the embedded β‐carotene, and this was confirmed by Raman analysis. XRD showed BC‐AmMPs had a B‐type amylose crystal structure with a degree of crystallinity lower than that of AmMPs. This lower crystallinity of AmMP after BC encapsulation was confirmed by DSC analysis. Decreased enthalpy of gelatinization (ΔHgel) of BC‐AmMP implied that molecular order within the amylose microstructure was influenced by the presence of BC. The stability of BC against environmental stresses, such as UV light and oxidative stress, was significantly enhanced by its encapsulation. The authors propose a new approach to the preparation of an amylose based carrier system for active compounds or expensive food ingredients with poor stabilities during storage or processing. Given that amylose is a safe food material, the devised encapsulation system will find wide range of practical applications in the food industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1640–1646, 2017  相似文献   

13.
14.
The profile of secondary metabolites in plants reflects the balance of biosynthesis, degradation and storage, including the availability of precursors and products that affect the metabolic equilibrium. We investigated the impact of the precursor–product balance on the carotenoid pathway in the endosperm of intact rice plants because this tissue does not normally accumulate carotenoids, allowing us to control each component of the pathway. We generated transgenic plants expressing the maize phytoene synthase gene (ZmPSY1) and the bacterial phytoene desaturase gene (PaCRTI), which are sufficient to produce β‐carotene in the presence of endogenous lycopene β‐cyclase. We combined this mini‐pathway with the Arabidopsis thaliana genes AtDXS (encoding 1‐deoxy‐D‐xylulose 5‐phosphate synthase, which supplies metabolic precursors) or AtOR (the ORANGE gene, which promotes the formation of a metabolic sink). Analysis of the resulting transgenic plants suggested that the supply of isoprenoid precursors from the MEP pathway is one of the key factors limiting carotenoid accumulation in the endosperm and that the overexpression of AtOR increased the accumulation of carotenoids in part by up‐regulating a series of endogenous carotenogenic genes. The identification of metabolic bottlenecks in the pathway will help to refine strategies for the creation of engineered plants with specific carotenoid profiles.  相似文献   

15.
Periodontitis is associated with development of diabetes mellitus. Although lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg), a major pathogen of periodontitis, may lead the progression of diabetes complications, the precise mechanisms are unclear. We, therefore, investigated the effects of β‐carotene on production of Pg LPS‐induced inflammatory cytokines in human monocytes cultured high glucose (HG) condition. THP‐1 cells were cultured under 5.5 mM or 25 mM glucose conditions, and cells were stimulated with Pg LPS. To investigate the productivity of TNF‐α, IL‐6, and MCP‐1, cell supernatants were collected for ELISA. To examine the effects of NF‐kB signals on cytokine production, Bay11‐7082 was used. HG enhanced Pg LPS‐induced production of TNF‐α, IL‐6, and MCP‐1 via NF‐kB signals in THP‐1. β‐carotene suppressed the enhancement of the Pg LPSinduced cytokine production in THP‐1 via NF‐κB inactivation. Our results suggest that β‐carotene might be a potential anti‐inflammatory nutrient for circulating Pg LPS‐mediated cytokine production in diabetic patients with periodontitis.  相似文献   

16.
Flowers are the defining feature of angiosperms, and function as indispensable organs for sexual reproduction. Flower colour typically plays an important role in attracting pollinators, and can show considerable variation, even between closely related species. For example, domesticated tomato (S. lycopersicum) has orange/yellow flowers, while the wild relative S. chilense (accession LA2405) has bright yellow flowers. In this study, the mechanism of flower colour formation in these two species was compared by evaluating the accumulation of carotenoids, assessing the expression genes related to carotenoid biosynthetic pathways and observing chromoplast ultrastructure. In S. chilense petals, genes associated with the lutein branch of the carotenoid biosynthetic pathway, phytoene desaturase (PDS), ζ‐carotene desaturase (ZDS), lycopene β‐cyclase (LCY‐B), β‐ring hydroxylase (CRTR‐B) and ε‐ring hydroxylase (CRTR‐E), were highly expressed, and this was correlated with high levels of lutein accumulation. In contrast, PDS, ZDS and CYC‐B from the neoxanthin biosynthetic branch were highly expressed in S. lycopersicum anthers, leading to increased β‐carotene accumulation and hence an orange/yellow colour. Changes in the size, amount and electron density of plastoglobules in chromoplasts provided further evidence of carotenoid accumulation and flower colour formation. Taken together, these results reveal the biochemical basis of differences in carotenoid pigment accumulation and colour between petals and anthers in tomato.  相似文献   

17.
We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv/Fm). On the other hand, β‐carotene accumulation was positively affected by higher Fv/Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.  相似文献   

18.
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi.  相似文献   

19.
20.
Glycoproteins produced by non‐engineered insects or insect cell lines characteristically bear truncated, paucimannose N‐glycans in place of the complex N‐glycans produced by mammalian cells. A key reason for this difference is the presence of a highly specific N‐glycan processing β‐N‐acetylglucosaminidase in insect, but not in mammalian systems. Thus, reducing or abolishing this enzyme could enhance the ability of glycoengineered insects or insect cell lines to produce complex N‐glycans. Of the three insect species routinely used for recombinant glycoprotein production, the processing β‐N‐acetylglucosaminidase gene has been isolated only from Spodoptera frugiperda. Thus, the purpose of this study was to isolate and characterize the genes encoding this important processing enzyme from the other two species, Bombyx mori and Trichoplusia ni. Bioinformatic analyses of putative processing β‐N‐acetylglucosaminidase genes isolated from these two species indicated that each encoded a product that was, indeed, more similar to processing β‐N‐acetylglucosaminidases than degradative or chitinolytic β‐N‐acetylglucosaminidases. In addition, over‐expression of each of these genes induced an enzyme activity with the substrate specificity characteristic of processing, but not degradative or chitinolytic enzymes. Together, these results demonstrated that the processing β‐N‐acetylglucosaminidase genes had been successfully isolated from Trichoplusia ni and Bombyx mori. The identification of these genes has the potential to facilitate further glycoengineering of baculovirus‐insect cell expression systems for the production of glycosylated proteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号