首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biofilms as complex microbial communities attached to surfaces pose several challenges in different sectors, ranging from food and healthcare to desalination and power generation. The biofilm mode of growth allows microorganisms to survive in hostile environments and biofilm cells exhibit distinct physiology and behaviour in comparison with their planktonic counterparts. They are ubiquitous, resilient and difficult to eradicate due to their resistant phenotype. Several chemical‐based cleaning and disinfection regimens are conventionally used against biofilm‐dwelling micro‐organisms in vitro. Although such approaches are generally considered to be effective, they may contribute to the dissemination of antimicrobial resistance and environmental pollution. Consequently, advanced green technologies for biofilm control are constantly emerging. Disinfection using nonthermal plasmas (NTPs) is one of the novel strategies having a great potential for control of biofilms of a broad spectrum of micro‐organisms. This review discusses several aspects related to the inactivation of biofilm‐associated bacteria and fungi by different types of NTPs under in vitro conditions. A brief introduction summarizes prevailing methods in biofilm inactivation, followed by introduction to gas discharge plasmas, active plasma species and their inactivating mechanism. Subsequently, significance and aspects of NTP inactivation of biofilm‐associated bacteria, especially those of medical importance, including opportunistic pathogens, oral pathogenic bacteria, foodborne pathogens and implant bacteria, are discussed. The remainder of the review discusses majorly about the synergistic effect of NTPs and their activity against biofilm‐associated fungi, especially Candida species.  相似文献   

2.
3.
4.
5.
The lipid raft hypothesis proposed that these microdomains are small (10–200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.  相似文献   

6.
Aims: To develop a colorimetric colony‐screening assay to facilitate the isolation of micro‐organisms capable of defluorination. Methods and Results: A metal‐dye chelate, zirconium‐xylenol orange was used to detect fluoride ions released from a fluorinated substrate through microbial metabolism. Depolymerised zirconium reagent gave the greatest visual contrast for the presence of fluoride compared to more polymerised forms of zirconium reagent. The sensitivity of the assay was greatest when the molar ratio of depolymerised zirconium to xylenol orange was 1 : 2. Using depolymerised zirconium and xylenol orange (150 and 300 nmol l?1 respectively), the assay could detect a fluoride application spot (5 mmol l?1) containing 50 nmoles of fluoride ions. Most media constituents were well tolerated by the assay, although phosphate ions needed to be restricted to 0·1 g l?1 and some proteins digest to between 1 and 5 g l?1. A microbial enrichment culture growing on solidified medium containing 20 mmol l?1 fluoroacetate was screened using the assay, and defluorinating bacteria belonging to the genus Burkholderia isolated. Conclusions: A method was developed that is sensitive, rapid and reliable for detecting defluorination by micro‐organisms growing on solidified medium. Significance and Impact of the Study: This method can be used to facilitate the isolation of micro‐organisms capable of defluorination.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) are polyesters accumulated by many bacteria under unbalanced growth conditions, and have been used to meet the various demands in areas of agriculture, medicine, and materials especially belong to a rapidly expanding area of biomedical research. Unfortunately, the high production cost than the traditional synthetic materials has greatly limited the wide application of PHA. Here, we systematically summarized recent progress in production of PHAs and a series of optimization strategies such as supplying renewable carbon substrates, developing better bacterial strains, optimization of fermentation processes, engineering new pathways and etc., were applied to reduce production cost, therefore providing many new ideas and methods for the production of PHAs in economically viable processes. This is believed to be a comprehensive report to show different strategies and methods for low‐cost production of PHAs. Further studies are still needed to make PHAs more and more economically viable to meet a wide range of applicability.  相似文献   

8.
The utility, availability, cost‐effectiveness, and reliability of prefabricated video systems designed to monitor wildlife have lagged behind the unique and varied needs of many researchers. Many systems are limited by inflexible video settings, lack of adequate data storage, and cannot be programmed by the user. More sophisticated systems can be cost prohibitive, and the literature describing remote wildlife video monitoring has, for the most part, not incorporated advances in camera and computer technology. Here, we present details of a pilot study to design and construct a lower cost (US $340) nest camera system to record the behavior of Acorn Woodpeckers (Melanerpes formicivorus) in artificial tree cavity nests. This system incorporates a Raspberry Pi micro‐computer, Pi NoIR infrared camera, a wireless adapter to transmit video over the Internet, and Deka rechargeable gel batteries for power. We programmed the system to motion‐sense, to record exclusively during daylight hours, and to automatically upload videos to the cloud over wireless Internet. The Raspberry Pi micro‐computer does not require advanced programming or electrical engineering skills to build and configure and, because it is programmable, provides unprecedented flexibility for field researchers who wish to configure the system to the specific needs of their study.  相似文献   

9.
Microalgae biomass has been consumed as animal feed, fish feed and in human diet due to its high nutritional value. In this experiment, microalgae specie of Chlorella Vulgaris FSP‐E was utilized for protein extraction via simple sugaring‐out assisted liquid biphasic electric flotation system. The external electric force provided to the two‐phase system assists in disruption of rigid microalgae cell wall and releases the contents of microalgae cell. This experiment manipulates various parameters to optimize the set‐up. The liquid biphasic electric flotation set‐up is compared with a control liquid biphasic flotation experiment without the electric field supply. The optimized separation efficiency of the liquid biphasic electric flotation system was 73.999 ± 0.739% and protein recovery of 69.665 ± 0.862% compared with liquid biphasic flotation, the separation efficiency was 61.584 ± 0.360% and protein recovery was 48.779 ± 0.480%. The separation efficiency and protein recovery for 5 × time scaled‐up system was observed at 52.871 ± 1.236% and 73.294 ± 0.701%. The integration of simultaneous cell‐disruption and protein extraction ensures high yield of protein from microalgae. This integrated method for protein extraction from microalgae demonstrated its potential and further research can lead this technology to commercialization.  相似文献   

10.
11.
Aims: To determine the detection limit of diagnostic negative staining electron microscopy for the diagnosis of pathogens that could be used for bioterrorism. Methods and Results: Suspensions of vaccinia poxvirus and endospores of Bacillus subtilis were used at defined concentrations as a model for poxviruses and spores of anthrax (Bacillus anthracis), both of which are pathogens that could be used for bioterrorist attacks. Negative staining electron microscopy was performed directly or after sedimentation of these suspensions on to the sample supports using airfuge ultracentrifugation. For both virus and spores, the detection limit using direct adsorption of a 10‐μl sample volume onto the sample support was 106 particles per ml. Using airfuge ultracentrifugation with a sample volume of 80 μl, the detection limit could be reduced to 105 particles per ml for spores and to 5 × 104 particles per ml for poxviruses. The influence on particle detection of incubation time, washing and adsorption procedures was investigated. Conclusions: The reproducibility and sensitivity of the method were acceptable, particularly considering the small sample volume and low particle number applied onto the sample support. Significance and Impact of the Study: Diagnostic negative staining electron microscopy is used for the diagnosis of pathogens in emergency situations because it allows a rapid examination of all particulate matter down to the nanometre scale. This study provides precise detection limit for the method, an important factor for the validation and improvement of the technique.  相似文献   

12.
Aims: Transmission routes of noroviruses, leading aetiological agents of acute gastroenteritis, are rarely verified when outbreaks occur. Because the destination of norovirus particles being firmly captured by micro‐organisms could be totally different from that of those particles moving freely, micro‐organisms with natural affinity ligands such as virus‐binding proteins would affect the fate of viruses in environment, if such microbial affinity ligands exist. The aim of this study is to identify norovirus‐binding proteins (NoVBPs) that are presumably working as natural ligands for norovirus particles in water environments. Methods and Results: NoVBPs were recovered from activated sludge micro‐organisms by an affinity chromatography technique in which a capsid peptide of norovirus genogroup II (GII) was immobilized. The recovered NoVBPs bind to norovirus‐like particles (NoVLPs) of norovirus GII, and this adsorption was stronger than that to NoVLPs of norovirus genogroup I. The profile of two‐dimensional electrophoresis of NoVBPs showed that the recovered NoVBPs included at least seven spots of protein. The determination of N‐terminal amino acid sequences of these NoVBPs revealed that hydrophobic interactions could contribute to the adsorption between NoVBPs and norovirus particles. Conclusions: NoVBPs conferring a high affinity to norovirus GII were successfully isolated from activated sludge micro‐organisms. Significance and Impact of the Study: NoVBPs could be natural viral ligands and play an important role in the NoV transmission.  相似文献   

13.
14.
15.
16.
Washing is a standard step for enzyme‐linked immunosorbent assays (ELISA) performed on a paper‐based chip, in which nonspecific‐binding antibodies and antigens should be removed completely from the paper surface. In this study, a novel three‐dimensional (3D) washing strategy using a heating ring‐oven was carried out on a paper‐based chip. Compared with a plane washing mode by a ring‐oven, this 3D washing strategy obtained a lower background, as gravity played an important role in the washing step. The paper‐based chip was placed on a 3D plastic holder and the waste area was connected to a heating ring. Use of a heating waste area meant that the nonspecific‐binding protein was continuously carried to the waste area through gravity and capillary action. The angle between the plastic holder and the ring plane was carefully selected. The effect of washing on different parts of the detection area was investigated by upconversion fluorescence and chemiluminescence (CL). This novel 3D washing strategy was performed for carcinoembryonic antigen detection through CL and a lower detection limit of 2 pg ml?1 was obtained. This approach provides an effective washing strategy to remove nonspecific‐binding antibody from a paper‐based immunodevice.  相似文献   

17.
18.
Sodium fluoroacetate (1080) is a vertebrate poison commonly used for the control of vertebrate pests in Australia. Long‐term environmental persistence of 1080 from baiting operations has likely nontarget species and environmental impacts and is a matter of public concern. Defluorinating micro‐organisms have been detected in soils of Western and central Australia, and Queensland, but not in south‐eastern Australia. The presence or absence of defluorinating micro‐organisms in soils from south‐eastern Australia will assist in determining whether long‐term environmental persistence of 1080 is or is not occurring. Soils from the Central West Slopes and Plains and Central Tablelands of New South Wales were sampled to investigate the presence and capability of 1080 defluorinating soil micro‐organisms. Thirty‐one species of micro‐organisms were isolated from soils from each site after 10 days incubation in a 20 mM 1080 solution. Of these, 13 isolates showed measurable defluorinating ability when grown in a 1080 and sterile soil suspension. Two species, the bacteria Micromonospora, and the actinomycete Streptosporangium, have not been previously reported for their defluorinating ability. These results indicate that defluorinating micro‐organisms are present in soils in south‐eastern Australia, which adds weight to other studies that found that 1080 is subject to microbiological degradative processes following removal from the bait substrate. Soil micro‐organism defluorination, in combination with physical breakdown and uptake by plants, indicates that fluoroacetate in soils and natural water ways is unlikely to persist. This has implications for the better informed use of 1080 in pest animal management programmes in south‐eastern Australia.  相似文献   

19.
20.
Aims: To assess low‐pressure ultraviolet light (LP‐UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed to LP‐UV, and log10 inactivation and inactivation kinetics were evaluated. All strains exhibited greater than 4 log10 inactivation at fluences of less than 20 mJ cm?2. Repair potential was evaluated using one M. avium strain. Light repair was evaluated by simultaneous exposure using visible and LP‐UV irradiation. Dark repair was evaluated by incubating UV‐exposed organisms in the dark for 4 h. The isolate did not exhibit light or dark repair activity. Conclusions: Results indicate that MAC organisms are readily inactivated at UV fluences typically used in drinking water treatment. Differences in activation kinetics were small but statistically significant between some tested isolates. Significance and Impact of the Study: Results provide LP‐UV inactivation kinetics for isolates from the relatively resistant MAC. Although UV inactivation of Mycobaterium species have been reported previously, data collected in this effort are comparable with recent UV inactivation research efforts performed in a similar manner. Data were assessed using a rigorous statistical approach and were useful towards modelling efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号