首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Franz G  Robinson AS 《Genetica》2011,139(1):1-5
The application of the Sterile Insect Technique (SIT) in area-wide integrated pest management (AW-IPM) programmes continues to increase. However, programme efficiency can still be considerably enhanced when certain components of the technology are improved, such as the development of improved strains for mass rearing and release. These include strains that (1) produce only male insects for sterilization and release and (2) carry easily identifiable markers to identify released sterile insects in the field. Using both classical and modern biotechnology techniques, key insect pests are targeted, where SIT programmes are being implemented. The pests include mosquitoes, the Mexican fruit fly, the codling moth, the oriental fruit fly and the pink bollworm. This special issue summarizes the results of research efforts aimed at the development and evaluation of new strains to a level where a decision can be made as to their suitability for use in large scale SIT programmes. Major beneficiaries will be operational AW-IPM programmes that apply the SIT against major insect pests.  相似文献   

2.
Post‐teneral diets containing yeast hydrolysate are reported to increase longevity, reproductive development and sexual performance of Queensland fruit fly (‘Q‐fly’) Bactrocera tryoni Froggatt (Diptera: Tephritidae). Consequently, diets including yeast hydrolysate are recommended for sterile Q‐flies before release in sterile insect technique (SIT) programmes. However, in some tephritids, diets including yeast hydrolysate are associated with an increased vulnerability to starvation. In the present study, the effects of yeast hydrolysate supplementation before release are considered with respect to the longevity of released Q‐fly when food becomes scarce. Experiments are carried out in three settings of varying resemblance to field conditions: 5‐L laboratory cages, 107‐L outdoor cages and 14 140‐L field cages containing potted citrus trees. In all experimental settings, compared with flies that received only sucrose, male and female Q‐flies that are provided with yeast hydrolysate during the first 2 days of adult life have a significantly shorter survival when subsequently deprived of food. Yeast supplementation appears to commit Q‐flies to a developmental trajectory that renders them more vulnerable to starvation. The practical significance of these findings for SIT depends on how often the releases are carried out under conditions in which Q‐flies experience extreme food shortages in the field.  相似文献   

3.
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects’ planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.  相似文献   

4.
Accurate estimates of remating in wild female insects are required for an understanding of the causes of variation in remating between individuals, populations and species. Such estimates are also of profound importance for major economic fruit pests such as the Mediterranean fruit fly (Ceratitis capitata). A major method for the suppression of this pest is the sterile insect technique (SIT), which relies on matings between mass-reared, sterilized males and wild females. Remating by wild females will thus impact negatively on the success of SIT. We used microsatellite markers to determine the level of remating in wild (field-collected) Mediterranean fruit fly females from the Greek Island of Chios. We compared the four locus microsatellite genotypes of these females and their offspring. Our data showed 7.1% of wild females remated. Skewed paternity among progeny arrays provided further evidence for double matings. Our lowest estimate of remating was 3.8% and the highest was 21%.  相似文献   

5.
The success of the sterile insect technique (SIT) for the control of the Mediterranean fruit fly or medfly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), depends largely on the ability of sterile flies to spread in the target area and compete with the wild males for wild females. Our objectives in the present study were three‐fold: (1) to evaluate the dispersal ability of sterile male medflies and compare their spatial dispersion patterns with that of wild males, (2) to evaluate how different release methods affect subsequent spatial dispersal, and (3) to determine whether manipulating the pre‐release diet of sterile males affects their dispersal. To achieve these objectives, we conducted three experiments in the field where we quantified and analyzed the spatial and temporal dispersal patterns of sterile medflies and the dispersion of resident wild males. Overall, ca. 5% of the released sterile flies were recaptured 100 m from the release point, and ca. 2% were recaptured 200 m from the release point. The released flies rarely survived longer than 5–7 days. We repeatedly found that the spatial dispersion patterns of sterile males significantly correlated with those of wild males. Release methods strongly affected subsequent fly dispersal in the field as significantly more flies were recaptured following a scattered release vs. a central one. Finally, we show that enriching sterile fly pre‐release diet with protein did not affect subsequent dispersal in the field. We conclude that sterile males are able to match the dispersion patterns of wild males, an outcome that is highly important for SIT success. Large releases from central points distant from each other may leave many areas uncovered. Accordingly, scattered releases, repeated twice a week, will provide better coverage of all available aggregations sites. The spatial performance of protein‐fed males suggests that pre‐release diet amendments may be used without detriment as a sexual stimulant in SIT programs.  相似文献   

6.
7.
The oriental fruit fly, Bactrocera dorsalis, is a pest of fruit in the Asia–Pacific region and also, due to quarantine restrictions, a threat to California fruit production. Area-wide suppression of B. dorsalis integrated several approaches including the sterile insect technique (SIT). SIT involves exposing juveniles to gamma radiation and releasing sterile males in substantial numbers, where they successfully compete for wild females. The resulting infertile eggs lead to reduction of the pest populations. Although these protocols are well documented, arising issues about the international transport and distribution of radioactive products is creating difficulties in use of radioactive sources for sterilizing radiation. This led to a shift toward use of X-ray irradiation, which also sterilizes male and female insects. However, use of X-ray technologies is in its infancy and there is virtually no information on the effects of irradiation, other than sterilization, at the physiological and molecular levels of fruit fly biology. We posed the hypothesis that sterilizing male oriental fruit flies via radiation treatment also influences protein expression in the flies. We found that exposing pupae to X-ray irradiation impacted expression of 26 proteins in adult females and 31 proteins in adult males. Seven proteins (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, larval cuticle protein 2, sarcoplasmic calcium-binding protein alpha-B and A chains, general odorant-binding protein 99b, polyubiquitin, and protein disulfide-isomerase) were impacted in both sexes. Some of the proteins act in central energy-generating and in pheromone-signal processing pathways; we infer that males sterilized by X-ray irradiation may be enfeebled in their ability to compete with wild males for females in nature.  相似文献   

8.
The sterile insect technique (SIT), when used for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), generally relies on the release of sterile flies of only the male sex. Male selection is achieved through the use of a genetic sexing strain (GSS) in which females are killed by heat treatment in the generation prior to release. Transgenic sexing strains (TSS) have been developed that perform the same function of female-lethality, this time by withholding tetracycline (or related compounds) from the larval diet. The use of TSS may allow for certain problems associated with conventional GSS, such as strain instability and reduced productivity in mass-rearing, to be avoided. The performance, and principally the sexual competitiveness, of released male flies is important for the success of an SIT control programme. This study describes field cage experiments in which the competitiveness of males from a TSS (OX3376B) was compared with that of a conventional GSS (VIENNA-8) and two wild-type strains (TOLIMAN and ARG). When competing for female mates with wild-type males, OX3376B male performance was acceptable. When OX3376B males competed directly for mates with VIENNA-8 males, VIENNA-8 slightly outperformed the TSS males. Parallel tests, in which wild-type males competed with either OX3376B or VIENNA-8 males, showed that males from both sexing strains were highly competitive with wild-type males. These results suggest that OX3376B in particular, and TSS in general, show sufficiently good mating competitiveness to merit further research into their suitability for eventual use in SIT programmes.  相似文献   

9.
The Mediterranean fruit fly, Ceratitis capitata, is a pest of major economic importance and has become a model for the development of SIT control programs for insect pests. Significant information has been accumulated on classical and population genetics of this species during the past 2 decades. However, the availability of molecular markers is limited. Here, we present the isolation and characterization of 159 microsatellite clones and the development of 108 polymorphic microsatellite markers for this insect pest. Mapping by in situ hybridization to polytene chromosomes of 21 microsatellite clones enriched the cytogenetic map that was previously constructed by our group. The enriched map provides a large number of STSs for future genome mapping projects. Cross-species amplification of these microsatellite loci in 12 Tephritidae species and sequence analysis of several amplification products indicated a varying degree of transferability and their possible usefulness as molecular and genetic markers in these species where genetic and molecular tools are limited. E. E. Stratikopoulos and A. A. Augustinos contributed equally to this work.  相似文献   

10.
Several tephritid fruit flies have explosive population growth and a wide host range, resulting in some of the largest impacts on horticultural crops, reducing marketable produce, and limiting market access. For these pests, early detection and eradication are routinely implemented in vulnerable areas. However, social and consumer concerns can limit the types of population management tools available for fruit fly incursion responses. Deterministic population models were used to compare eradication tools used at typical densities alone and in combination against the Queensland fruit fly (‘Qfly’), Bactrocera tryoni. The models suggested that tools that prevent egg laying are likely to be most effective at reducing populations. Tools that induced mortality once Qfly was sexually mature only slowed population growth, as successful mating still occurred. Release of sterile Qfly when using the sterile insect technique (SIT) interferes with the successful mating of wild flies, and of the tools investigated here, SIT caused the greatest reduction in the population at the prescribed release rate. Used in tandem with SIT, protein baits slightly improved the rate of population reduction, but the male annihilation technique (MAT) almost nullified control by SIT due to the mortality induced on sterile flies. The model suggested that the most rapid decrease in population size would be achieved by SIT plus protein baits. However, the model predicted both the SIT and protein baits when used alone would result in population reduction. The MAT can be used prior to SIT release to increase overflooding ratios.  相似文献   

11.
In Sterile Insect Technique (SIT) programs, massive numbers of insects are reared, sterilized, and released in the field to impede reproduction of pest populations. The domestication and rearing processes used to produce insects for SIT programs may have significant evolutionary impacts on life history and reproductive biology. We assessed the effects of domestication on sexual performance of laboratory reared Queensland fruit fly, Bactrocera tryoni, by comparing an old (49 generations) and a young colony (5 generations). We evaluated mating propensity, mating latency, copula duration, sperm transfer, and ability to induce sexual inhibition in mates. Overall, both males and females from the old colony had greater mating propensity than those from the young colony. Copula duration was longer when females were from the old colony. There was no evidence of sexual isolation between the colonies as males and females from the two colonies had similar propensity to mate with flies from either colony. Males from the old colony transferred more sperm regardless of which colony their mate was from. Finally, males from both colonies were similarly able to induce sexual inhibition in their mates and were also similarly able to secure copulations with already-mated females. Positive effects of domestication on sperm transfer, coupled with maintained ability to induce sexual inhibition in mates and to secure copulations with previously mated females, highlights that domestication may have little effect, or even positive effects, on some aspects of sexual performance that may advantage mass-reared B. tryoni in SIT programs.  相似文献   

12.
Significant plant pests such as fruit flies that travel with fresh produce between countries as eggs or larvae pose a great economic threat to the agriculture and fruit industry worldwide. Time‐limited and expensive quarantine decisions require accurate identification of such pests. Immature stages are often impossible to identify, making them a serious concern for biosecurity agencies. Use of COI barcoding PCR, often the only molecular identification resource, is time‐consuming. We assess the suitability of the COI barcoding region for real‐time PCR assays to identify four pest fruit fly species (Family: Tephritidae), in a diagnostic framework. These species, namely Mediterranean fruit fly (Ceratitis capitata), Queensland fruit fly (Bactrocera tryoni), African invader fly (Bactrocera invadens) and Island fly (Dirioxa pornia) each provide a different set of genetic species delimitation problems. We discuss the benefits and limitations of using a single‐gene TaqMan? real‐time approach for such species. Our results indicate that COI‐based TaqMan? real‐time PCR assays, in particular for genetically distinct species, provide an accurate, sensitive and rapid diagnostic tool.  相似文献   

13.
During 2008 and 2009, the efficacy of the combination of two Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), control techniques, sterile insect technique (SIT) and a chemosterilant bait station system (Adress), was tested in three crops: citrus (Citrus spp.), stone fruit (Prunus spp.), and persimmon (Diospyros spp.). Two thousand sterile males were released per ha each week in the whole trial area (50,000 ha, SIT area). For 3,600 ha, within the whole trial area, 24 Adress traps per ha were hung (SIT + Adress area). Ten SIT + Adress plots and 10 SIT plots in each of three different fruit crops were arranged to assess Mediterranean fruit fly population densities and fruit damage throughout the trial period. To evaluate the efficacy of each treatment, the male and female populations were each monitored from August 2008 to November 2009, and injured fruit was assessed before harvest. Results showed a significant reduction in the C. capitata population in plots treated with both techniques versus plots treated only with the SIT. Likewise, a corresponding reduction in the percentage of injured fruit was observed. These data indicate the compatibility of these techniques and suggest the possibility of using Adress coupled with SIT to reduce C. capitata populations in locations with high population densities, where SIT alone is not sufficiently effective to suppress fruit fly populations to below damaging levels.  相似文献   

14.
Queensland fruit fly, Bactrocera tryoni (“Q‐fly”), is Australia’s most economically important insect pest of horticultural and commercial crops especially in the eastern regions. The sterile insect technique (SIT) has been adopted as an environmentally benign and sustainable approach for management of Q‐fly outbreaks. High‐performance larval diets are required to produce the millions of flies needed each week for SIT. Yeast products contribute amino acids (protein) to fruit fly larval diets, as well as carbohydrate, fat and micronutrients, but there can be substantial variation in the nutritional composition and suitability of yeast products for use in larval diets. Gel larval diets have recently been developed for large‐scale rearing of Q‐fly for SIT, and composition of these diets requires optimization for both performance and cost, including choice of yeast products. We assessed performance of Q‐flies reared on gel larval diets that contained debittered brewer’s yeast (Lallemand LBI2240), hydrolysed yeast (Lallemand FNILS65), inactivated brewer’s yeast (Lallemand LBI2250) and inactivated torula yeast (Lallemand 2160‐50), including blends. Q‐flies performed poorly when reared on diets containing only or mostly hydrolysed yeast in terms of pupal number, pupal weight and percentage of fliers. Performance was also poor on diets containing high proportions of torula yeast. Overall, debittered brewer’s yeast is recommended as the best option for Q‐fly gel larval diet, as it is cheap, readily available, and produces flies with good performance in quality control assays. Inactivated brewer’s yeast produced flies of comparable quality with only a modest increase in cost and would also serve as an effective alternative.  相似文献   

15.
The fact that pests are the most abundant species in agricultural settings has broadly precluded the attention to non-pest species and the study of temporal dynamics of diversity in agroecosystems. Because, agroecosystems hold increasingly important portions of biological diversity, understanding of non-pest species dynamics in such systems will contribute significantly to their conservation. In addition, deep understanding of both pest and non-pest population dynamics in a community context necessarily requires a long-term approach. By means of the analysis of weekly fruit fly sampling sessions across 12 years, in three tropical fruit orchards, we describe the temporal dynamics of species richness and turnover, structure and composition of Anastrepha fruit fly ensembles considering pest and non-pest species. Furthermore, we ask if time series of non-pest species covariate with time series of pest species, as a way to evaluate the best management scheme to minimize negative impacts of pest control on non-pest species. Among 18 Anastrepha fruit fly species detected over 12 years, five were considered as pest species. Fruit fly ensembles were characterized by strong seasonal dynamics composed of annual cycles. Sapodilla was the most diverse orchard. Overall, fruit fly ensembles appeared stable throughout time. The temporal dynamics of non-pest species covaried positively with temporal dynamics of pest abundance, with consequent management implications. Results suggest that in mango and grapefruit orchards, pest control could be focused during time periods with low potential impact on non-pest species; while in sapodilla orchards other approaches should be developed. The approach described here could be used in agroecosystems to minimize the impact of pest management on non-pest species particularly in highly anthropized landscapes and human-managed ecosystems were biodiversity conservation is a high priority.  相似文献   

16.
No-choice tests were conducted to determine whether fruit of southern highbush blueberry, Vaccinium corymbosum L., hybrids are hosts for three invasive tephritid fruit flies in Hawaii. Fruit of various blueberry cultivars was exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Each of the 15 blueberry cultivars tested were infested by oriental fruit fly and Mediterranean fruit fly, confirming that these fruit flies will oviposit on blueberry fruit and that blueberry is a suitable host for fly development. However, there was significant cultivar variation in susceptibility to fruit fly infestation. For oriental fruit fly, 'Sapphire' fruit produced an average of 1.42 puparia per g, twice as high as that of the next most susceptible cultivar 'Emerald' (0.70 puparia per g). 'Legacy', 'Biloxi', and 'Spring High' were least susceptible to infestation, producing only 0.20-0.25 oriental fruit fly puparia per g of fruit. For Mediterranean fruit fly, 'Blue Crisp' produced 0.50 puparia per g of fruit, whereas 'Sharpblue' produced only 0.03 puparia per g of fruit. Blueberry was a marginal host for melon fly. This information will aid in development of pest management recommendations for blueberry cultivars as planting of low-chill cultivars expands to areas with subtropical and tropical fruit flies. Planting of fruit fly resistant cultivars may result in lower infestation levels and less crop loss.  相似文献   

17.
The American cherry fruit fly is an invasive pest species in Europe, of serious concern in tart cherry production as well as for the potential to hybridize with the European cherry fruit fly, Rhagoletis cerasi L. (Diptera: Tephritidae), which might induce new pest dynamics. In the first European reports, the question arose whether only the eastern American cherry fruit fly, Rhagoletis cingulata (Loew) (Diptera: Tephritidae), is present, or also the closely related western American cherry fruit fly, Rhagoletis indifferens Curran. In this study, we investigate the species status of European populations by comparing these with populations of both American species from their native ranges, the invasion dynamics in German (first report in 1993) and Hungarian (first report in 2006) populations, and we test for signals of hybridization with the European cherry fruit fly. Although mtDNA sequence genealogy could not separate the two American species, cross‐species amplification of 14 microsatellite loci separated them with high probabilities (0.99–1.0) and provided evidence for R. cingulata in Europe. German and Hungarian R. cingulata populations differed significantly in microsatellite allele frequencies, mtDNA haplotype and wing pattern distributions, and both were genetically depauperate relative to North American populations. The diversity suggests independent founding events in Germany and Hungary. Within each country, R. cingulata displayed little or no structure in any trait, which agrees with rapid local range expansions. In cross‐species amplifications, signals of hybridization between R. cerasi and R. cingulata were found in 2% of R. cingulata individuals and in 3% of R. cerasi. All putative hybrids had R. cerasi mtDNA indicating that the original between‐species mating involved R. cerasi females and R. cingulata males.  相似文献   

18.
The sterile insect technique (SIT) is widely used in integrated programs against tephritid fruit fly pests, particularly the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Unfortunately, the mass-rearing procedures inherent to the SIT often lead to a reduction in the mating ability of the released males. One potential solution involves the prerelease exposure of males to particular attractants. In particular, exposure of male Mediterranean fruit flies to ginger, Zingiber officinale Roscoe, root oil (GRO) has been shown to increase mating success in laboratory and field cage trials. Here, we describe a field experiment that compares the level of egg sterility observed in two Hawaiian coffee, Coffea arabica L., plots, with GRO-exposed, sterile males released in one (treated) plot and nonexposed, sterile males released in the other (control) plot. Once per week in both plots over a 13-wk period, sterile males were released, trap captures were scored to estimate relative abundance of sterile and wild males, and coffee berries were collected and dissected in the laboratory to estimate the incidence of unhatched (sterile) eggs. Data on wild fly abundance and the natural rate of egg hatch also were collected in a remote area that received no sterile males. Despite that sterile:wild male ratios were significantly lower in the treated plot than in the control plot, the incidence of sterile eggs was significantly higher in the treated plot than in the control plot. Correspondingly, significantly higher values of Fried's competitiveness index (C) were found, on average, for treated than control sterile males. This study is the first to identify an association between the GRO "status" of sterile males and the incidence of egg sterility in the field and suggests that prerelease, GRO exposure may represent a simple and inexpensive means to increase the effectiveness of Mediterranean fruit fly SIT programs.  相似文献   

19.
Climate change may influence the application efficiency of transgenic marking, such as in mark–release–recapture (MRR) experiments or sterile insect technique (SIT). Wild and transgenic fruit flies of Bactrocera dorsalis were subjected to oscillating regimes that represent current temperature conditions (mean: 28.6°C) and various future possible scenarios (means: 30.0, 32.5 and 35.0°C). As the temperature was increased to 30.0°C, the negative effects on adult fecundity and demographic parameters (net reproductive rate and intrinsic rate of increase) of only the transgenic cohorts increased. With a moderate warming (32.5°C), negative effects were observed on the net reproductive rate for both fly strains, and these effects on the life‐history traits (adult fecundity and longevity) and intrinsic rate of increase were stronger in the transgenic than in the wild cohorts, with reference to the trait values at 30.0°C. A severe warming (35.0°C) resulted in the failure of all individuals of both fly strains to reach adulthood. We suggest parametrical adjustments or decreased differences in fitness with refined transgenesis under current and future climate conditions, which can reduce the marking limitations of pest management and eradication programmes.  相似文献   

20.
The Sterile Insect Technique (SIT) involving area-wide release of mass-reared and sterilized pest insects has proven successful to reduce, control and eradicate economically important pest species, such as the Mediterranean fruit fly (medfly). For the efficient application, effective monitoring to assess the number and mating success of the released medflies is essential. Here, we report sperm-specific marking systems based on the spermatogenesis-specific Ceratitis capitata beta2-tubulin (Ccbeta2t) promoter. Fluorescent sperm can be isolated from testes or spermathecae. The marking does not cause general disadvantages in preliminary laboratory competitiveness assays. Therefore, transgenic sperm marking could serve as a major improvement for monitoring medfly SIT programs. The use of such harmless transgenic markers will serve as an ideal initial condition to transfer insect transgenesis technology from the laboratory to field applications. Moreover, effective and easily recognizable sperm marking will make novel studies possible on medfly reproductive biology which will help to further improve SIT programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号