首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrate for the first time that a stable, micron‐scale segregation of focal enrichments of sterols exists at physiological temperature in the plasma membrane of live murine and human sperm. These enrichments of sterols represent microheterogeneities within this membrane domain overlying the acrosome. Previously, we showed that cholera toxin subunit B (CTB), which binds the glycosphingolipid, GM1, localizes to this same domain in live sperm. Interestingly, the GM1 undergoes an unexplained redistribution upon cell death. We now demonstrate that GM1 is also enriched in the acrosome, an exocytotic vesicle. Transfer of lipids between this and the plasma membrane occurs at cell death, increasing GM1 in the plasma membrane without apparent release of acrosomal contents. This finding provides corroborative support for an emerging model of regulated exocytosis in which membrane communications might occur without triggering the “acrosome reaction.” Comparison of the dynamics of CTB‐bound endogenous GM1 and exogenous BODIPY–GM1 in live murine sperm demonstrate that the sub‐acrosomal ring (SAR) functions as a specialized diffusion barrier segregating specific lipids within the sperm head plasma membrane. Our data show significant differences between endogenous lipids and exogenous lipid probes in terms of lateral diffusion. Based on these studies, we propose a hierarchical model to explain the segregation of this sterol‐ and GM1‐enriched domain in live sperm, which is positioned to regulate sperm fertilization competence and mediate interactions with the oocyte. Moreover, our data suggest potential origins of subtypes of membrane raft microdomains enriched in sterols and/or GM1 that can be separated biochemically. J. Cell. Physiol. 218: 522–536, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Circular ribosomal RNA genes are a general feature of schizopyrenid amoebae   总被引:5,自引:0,他引:5  
We have recently shown that the ribosomal RNA genes of the amoebo-flagellate Naegleria gruberi Schardinger, 1899, strain NEG-M are carried exclusively on a 14 kilobasepair plasmid. To explore the distribution of this unique gene arrangement, we have examined another strain of N. gruberi and four other species from the order Schizopyrenida. All have this unusual gene arrangement although the size of the plasmid varies widely. Species groups based on morphological criteria do not agree with those resulting from comparison of plasmid restriction enzyme patterns.  相似文献   

3.
Rats with electrodes implanted in the ventral tegmentum and posterior hypothalamus were trained to press a lever to obtain electrical stimulation through the electrodes. Stimulation in animals with ventral tegmental electrodes led to an increased concentration of homovanillic acid and dihydroxyphenylacetic acid in the forebrain of the animals. Stimulation in the posterior hypothalamus did not result in such raised concentrations in spite of the fact that the behaviour from the two sites was indistinguishable. Responding in the posterior hypothalamus was reduced by doses of neuroleptic drug similar to those reported to reduce responding in the ventral tegmental area.  相似文献   

4.
Almost monodisperse three‐dimensional (3D) BaMoO4, BaMoO4:Eu3+ micron‐octahedrons and micron‐flowers were successfully prepared via a large‐scale and facile sonochemical route without using any catalysts or templates. X‐Ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), energy dispersion X‐ray (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy were employed to characterize the as‐obtained products. It was found that size modulation could be easily realized by changing the concentrations of reactants and the pH value of precursors. The formation mechanism for micron‐octahedrons and micron‐flowers was proposed on the basis of time‐dependent experiments. Using excitation wavelengths of 396 or 466 nm for BaMoO4:Eu3+ phosphors, an intense emission line at 614 nm was observed. These phosphors might be promising components with possible application in the fields of near UV‐ and blue‐excited white light‐emitting diodes. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating the properties of molybdate materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Global landscapes are changing due to human activities with consequences for both biodiversity and ecosystems. For single species, terrestrial mammal population densities have shown mixed responses to human pressure, with both increasing and decreasing densities reported in the literature. How the impacts of human activities on mammal populations translates into altered global density patterns remains unclear. Here we aim to disentangle the effect of human impacts on large‐scale patterns of mammal population densities using a global dataset of 6729 population density estimates for 468 mammal species (representing 59% and 44% of mammalian orders and families). We fitted a mixed effect model to explain the variation in density based on a 1‐degree resolution as a function of the human footprint index (HFI), a global proxy of direct and indirect human disturbances, while accounting for body mass, trophic level and primary productivity (normalized vegetation index; NDVI). We found a significant positive relationship between population density and HFI, where population densities were higher in areas with a higher HFI (e.g. agricultural or suburban areas – no populations were located in very high HFI urban areas) compared to areas with a low HFI (e.g. wilderness areas). We also tested the effect of the individual components of the HFI and still found a consistent positive effect. The relationships remained positive even across populations of the same species, although variability among species was high. Our results indicate shifts in mammal population densities in human modified landscapes, which is due to the combined effect of species filtering, increased resources and a possible reduction in competition and predation. Our study provides further evidence that macroecological patterns are being altered by human activities, where some species will benefit from these activities, while others will be negatively impacted or even extirpated.  相似文献   

6.
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre‐ and post‐fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind‐pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre‐ and post‐fragmentation cohorts. Significant genetic structure was observed in pre‐fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post‐fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long‐term persistence of small remnant populations.  相似文献   

7.
8.
Although fungal communities are known to vary along latitudinal gradients, mechanisms underlying this pattern are not well‐understood. We used high‐throughput sequencing to examine the large‐scale distributions of soil fungi and their relation to evolutionary history. We tested the Tropical Conservatism Hypothesis, which predicts that ancestral fungal groups should be more restricted to tropical latitudes and conditions than would more recently derived groups. We found support for this hypothesis in that older phyla preferred significantly lower latitudes and warmer, wetter conditions than did younger phyla. Moreover, preferences for higher latitudes and lower precipitation levels were significantly phylogenetically conserved among the six younger phyla, possibly because the older phyla possess a zoospore stage that is vulnerable to drought, whereas the younger phyla retain protective cell walls throughout their life cycle. Our study provides novel evidence that the Tropical Conservatism Hypothesis applies to microbes as well as plants and animals.  相似文献   

9.
Invasive rats have colonized most of the islands of the world, resulting in strong negative impacts on native biodiversity and on ecosystem functions. As prolific omnivores, invasive rats can cause local extirpation of a wide range of native species, with cascading consequences that can reshape communities and ecosystems. Eradication of rats on islands is now becoming a widespread approach to restore ecosystems, and many native island species show strong numerical responses to rat eradication. However, the effect of rat eradication on other consumers can extend beyond direct numerical effects, to changes in behavior, dietary composition, and other ecological parameters. These behavioral and trophic effects may have strong cascading impacts on the ecology of restored ecosystems, but they have rarely been examined. In this study, we explore how rat eradication has affected the trophic ecology of native land crab communities. Using stable isotope analysis of rats and crabs, we demonstrate that the diet or trophic position of most crabs changed subsequent to rat eradication. Combined with the numerical recovery of two carnivorous land crab species (Geograpsus spp.), this led to a dramatic widening of the crab trophic niche following rat eradication. Given the established importance of land crabs in structuring island communities, particularly plants, this suggests an unappreciated mechanism by which rat eradication may alter island ecology. This study also demonstrates the potential for stable isotope analysis as a complementary monitoring tool to traditional techniques, with the potential to provide more nuanced assessments of the community‐ and ecosystem‐wide effects of restoration.  相似文献   

10.
11.
12.
How plant‐feeding insects distribute themselves and utilize their host plant resources is still poorly understood. Several processes may be involved, and their relative roles may vary with the spatial scale considered. Herein, we investigate small‐scale patterns, namely how population density of a gall midge is affected by individual growth form, phenology, and microsite characteristics of its herb host. The long‐lived plant individuals vary much with regard to number of shoots, flower abundance, and flowering phenology. This variation is connected to site characteristics, primarily the degree of sun exposure. The monophagous insect galls the flowers of the host plant – an easily defined food resource. It is a poor disperser, but very long‐lived; diapausing larvae can stay in the soil for many years. Galls were censused on individual plants during 5 years; from a peak to a low in gall population density. Only a very small fraction of the flowers produced (<0.5%) were galled even in the peak year. Nevertheless, most plant individuals had galls at least 1 year. In a stepwise multiple regression, plant size (number of shoots) was found to be the most important predictor of gall density (galls/flower). However, gall density decreased more than one order of magnitude over the plant size range observed. There was also a weak effect of plant phenology. Early flowering plants had lower gall densities than those starting later. Sun exposure had no direct effect on gall density, but a path analysis revealed indirect effects via the timing of flowering. Gall population change was highly synchronous in different parts of the study area with no significant decrease in synchrony with distance.  相似文献   

13.
There are good reasons to believe that in cold temperate regions the whole water masses of ponds with little or no through flow are anoxic during the winter. This feature, demonstrated for Scandinavian ponds of widely differing productivity, must be of great ecological significance for the pond fauna.  相似文献   

14.
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries.  相似文献   

15.
16.
Tree cavities provide important habitat for wildlife. Effective landscape‐scale management of cavity‐dependent wildlife requires an understanding of where cavities occur, but tree cavities can be cryptic and difficult to survey. We assessed whether a landscape‐scale map of mature forest habitat availability, derived from aerial photographs, reflected the relative availability of mature trees and tree cavities. We assessed cavities for their suitability for use by wildlife, and whether the map reflected the availability of such cavities. There were significant differences between map categories in several characteristics of mature trees that can be used to predict cavity abundance (i.e. tree form and diameter at breast height). There were significant differences between map categories in the number of potential cavity bearing trees and potential cavities per tree. However, the index of cavity abundance based on observations made from the ground provided an overestimate of true cavity availability. By climbing a sample of mature trees we showed that only 5.1% of potential tree cavities detected from the ground were suitable for wildlife, and these were found in only 12.5% of the trees sampled. We conclude that management tools developed from remotely sensed data can be useful to guide decision‐making in the conservation management of tree cavities but stress that the errors inherent in these data limit the scale at which such tools can be applied. The rarity of tree cavities suitable for wildlife in our study highlights the need to conserve the tree cavity resource across the landscape, but also the importance of increasing the accuracy of management tools for decision‐making at different scales. Mapping mature forest habitat availability at the landscape scale is a useful first step in managing habitat for cavity‐dependent wildlife, but the potential for overestimating actual cavity abundance in a particular area highlights the need for complementary on‐ground surveys.  相似文献   

17.
18.
The aging process is characterized by a chronic, low‐grade inflammatory state, termed “inflammaging.” It has been suggested that macrophage activation plays a key role in the induction and maintenance of this state. In the present study, we aimed to elucidate the mechanisms responsible for aging‐associated changes in the myeloid compartment of mice. The aging phenotype, characterized by elevated cytokine production, was associated with a dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis and diminished serum corticosteroid levels. In particular, the concentration of corticosterone, the major active glucocorticoid in rodents, was decreased. This could be explained by an impaired expression and activity of 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1), an enzyme that determines the extent of cellular glucocorticoid responses by reducing the corticosteroids cortisone/11‐dehydrocorticosterone to their active forms cortisol/corticosterone, in aged macrophages and peripheral leukocytes. These changes were accompanied by a downregulation of the glucocorticoid receptor target gene glucocorticoid‐induced leucine zipper (GILZ) in vitro and in vivo. Since GILZ plays a central role in macrophage activation, we hypothesized that the loss of GILZ contributed to the process of macroph‐aging. The phenotype of macrophages from aged mice was indeed mimicked in young GILZ knockout mice. In summary, the current study provides insight into the role of glucocorticoid metabolism and GILZ regulation during aging.  相似文献   

19.
A solid electrolyte interphase (SEI)‐free surface and fully reversible conversion are simultaneously realized in the Li‐ion storage of a specially designed ZnO porous nanocomposite with in situ surfaces/interfaces organic encapsulation for the first time. The built‐in oxygen‐ and/or moisture‐isolating organic layer of subangstrom thickness not only avoids the SEI formation, but also guarantees monodisperse and ultrasmall dimensions of ZnO nanocrystals, which are crucial for the high initial Coulombic efficiency (ICE) and fully reversible conversion. Benefiting from the high ICE up to 91.4%, stable long‐term cyclibility (95% capacity retention at 1 A g?1 after 1400 cycles), and no sacrificing Li‐ion storage capability (868 mAh g?1 at 0.1 A g?1), the ZnO nanocomposite demonstrates the highest initial Li‐ion utilization efficiency (ILUE, ≈85.4%) among previous transition metal oxide–based full cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号