首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hypoxia induces a diverse spectrum of changes in the expression and activity of numerous DNA repair factors within the tumor microenvironment. In particular, we and others have shown that hypoxia induces phosphorylation and activation of the checkpoint kinase, CHK2, in an ATM-dependent manner. One downstream target of CHK2, the BRCA1 protein, plays a critical role in both DNA repair and cell cycle checkpoint regulation in mammalian cells. Here we report that BRCA1 is specifically phosphorylated on Serine 988 in response to hypoxic stress, and phosphorylation at this site is dependent on CHK2 expression. These findings enhance our understanding of ATM-CHK2 pathway activation in hypoxia, and they identify a novel role for BRCA1 in the response to hypoxic stress.  相似文献   

4.
Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm2) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation.  相似文献   

5.
间断性低氧对大鼠淋巴细胞转化的影响   总被引:3,自引:0,他引:3  
目的: 探讨间断性低氧对机体免疫反应的影响.方法: 以模拟海拔高度间断性低氧(4 h/d)模型观察大鼠脾淋巴细胞对丝裂原(Con A)的反应性.结果: 与对照相比,5 km急性低氧4 h大鼠淋巴细胞的转化率下降25.43%(P<0.05) ,间断性低氧2、5、15 d后淋巴细胞转化率分别为97.03%、104.5%和99.55%,与对照组无明显差异.2 km间断性低氧(4 h/d)1、2、5、15 d,大鼠脾淋巴细胞转化率分别为93.19%、96.43%、99.03%和100.54%,与对照组无明显差异.脾单个核细胞DNA含量显示, 5 km急性低氧4 h DNA含量明显下降(76.22%±7.06%,P<0.05),间断性低氧5 d和15 d后与对照组无显著差异.结论: 急性低氧抑制淋巴细胞的转化,并随低氧的加重而增加,重复间断性低氧暴露其抑制作用减弱,引起大鼠淋巴细胞转化产生适应.推测免疫适应与HPA轴的适应有关.  相似文献   

6.
7.
Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.  相似文献   

8.
Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity   总被引:1,自引:0,他引:1  
Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.  相似文献   

9.
10.
Xie Y  Zhu WZ  Zhu Y  Chen L  Zhou ZN  Yang HT 《Life sciences》2004,76(5):559-572
Adaptation to intermittent high altitude (IHA) hypoxia can protect the heart against ischemia-reperfusion injury. In view of the fact that both Ca2+ paradox and ischemia-reperfusion injury are associated with the intracellular Ca2+ overload, we tested the hypothesis that IHA hypoxia may protect hearts against Ca2+ paradox-induced lethal injury if its cardioprotection bases on preventing the development of intracellular Ca2+ overload. Langendorff-perfused hearts from normoxic and IHA hypoxic rats were subjected to Ca2+ paradox (5 min of Ca2+ depletion followed by 30 min of Ca2+ repletion) and the functional, biochemical and pathological changes were investigated. The Ca2+ paradox incapacitated the contractility of the normoxic hearts, whereas the IHA hypoxic hearts significantly preserved contractile activity. Furthermore, the normoxic hearts subjected to Ca2+ paradox exhibited a marked reduction in coronary flow, increase in lactate dehydrogenase release, and severe myocyte damage. In contrast, these changes were significantly prevented in IHA hypoxic hearts. We, then, tested and confirmed our hypothesis that the protective mechanisms are mediated by mitochondria ATP-sensitive potassium channels (mitoKATP) and Ca2+/calmodulin-dependent protein kinase II (CaMKII), as the protective effect of IHA hypoxia was abolished by 5-hydroxydecanoate, a selective mitoKATP blocker, and significantly attenuated by KN-93, a CaMKII inhibitor. In conclusion, our studies offer for the first time that IHA hypoxia confers cardioprotection against the lethal injury of Ca2+ paradox and give biochemical evidence for the protective mechanism of IHA hypoxia. We propose that researches in this area may lead a preventive regimen against myocardial injury associated with Ca2+ overload.  相似文献   

11.
Geminin is an unstable inhibitor of DNA replication that gets destroyed at the metaphase/anaphase transition. The biological function of geminin has been difficult to determine because it is not homologous to a characterized protein and has pleiotropic effects when overexpressed. Geminin is thought to prevent a second round of initiation during S or G2 phase. In some assays, geminin induces uncommitted embryonic cells to differentiate as neurons. In this study, geminin was eliminated from developing Xenopus embryos by using antisense techniques. Geminin-deficient embryos show a novel and unusual phenotype: they complete the early cleavage divisions normally but arrest in G2 phase immediately after the midblastula transition. The arrest requires Chk1, the effector kinase of the DNA replication/DNA damage checkpoint pathway. The results indicate that geminin has an essential function and that loss of this function prevents entry into mitosis by a Chk1-dependent mechanism. Geminin may be required to maintain the structural integrity of the genome or it may directly down-regulate Chk1 activity. The data also show that during the embryonic cell cycles, rereplication is almost entirely prevented by geminin-independent mechanisms.  相似文献   

12.
Recent data have shown that cardioprotection can result in the import of specific proteins into the mitochondria in a process that involves heat shock protein 90 (HSP90) and is blocked by geldanamycin (GD), a HSP90 inhibitor. To test the hypothesis that an alteration in mitochondrial import is a more widespread feature of cardioprotection, in this study, we used a broad-based proteomics approach to investigate changes in the mitochondrial proteome following cardioprotection induced by inhibition of glycogen synthase kinase (GSK)-3. Mitochondria were isolated from control hearts, and hearts were perfused with the GSK inhibitor SB 216763 (SB) for 15 min before isolation of mitochondria. Mitochondrial extracts from control and SB-perfused hearts were labeled with isotope tags for relative and absolute quantification (iTRAQ), and differences in mitochondrial protein levels were determined by mass spectrometry. To test for the role of HSP90-mediated protein import, hearts were perfused in the presence and absence of GD for 15 min before perfusion with SB followed by mitochondrial isolation and iTRAQ labeling. We confirmed that treatment with GD blocked the protection afforded by SB treatment in a protocol of 20 min of ischemia and 40 min of reperfusion. We found 16 proteins that showed an apparent increase in the mitochondrial fraction following SB treatment. GD treatment significantly blocked the SB-mediated increase in mitochondrial association for five of these proteins, which included annexin A6, vinculin, and pyruvate kinase. We also found that SB treatment resulted in a decrease in mitochondrial content of eight proteins, of which all but two are established mitochondrial proteins. To confirm a role for mitochondrial import versus a change in protein synthesis and/or degradation, we measured changes in these proteins in whole cell extracts. Taken together, these data show that SB leads to a remodeling of the mitochondrial proteome that is partially GD sensitive.  相似文献   

13.
Mechanisms underlying the multiple developmental defects observed in Fanconi anemia (FA) patients are not well defined. We have identified the zebrafish homolog of human FANCD2, which encodes a nuclear effector protein that is monoubiquitinated in response to DNA damage, targeting it to nuclear foci where it preserves chromosomal integrity. Fancd2-deficient zebrafish embryos develop defects similar to those found in children with FA, including shortened body length, microcephaly, and microophthalmia, which are due to extensive cellular apoptosis. Developmental defects and increased apoptosis in Fancd2-deficient zebrafish were corrected by injection of human FANCD2 or zebrafish bcl2 mRNA, or by knockdown of p53, indicating that in the absence of Fancd2, developing tissues spontaneously undergo p53-dependent apoptosis. Thus, Fancd2 is essential during embryogenesis to prevent inappropriate apoptosis in neural cells and other tissues undergoing high levels of proliferative expansion, implicating this mechanism in the congenital abnormalities observed in human infants with FA.  相似文献   

14.
Sarcolipin (SLN) is a key regulator of sarco(endo)plasmic reticulum (SR) Ca(2+)-ATPase (SERCA), and its expression is altered in diseased atrial myocardium. To determine the precise role of SLN in atrial Ca(2+) homeostasis, we developed a SLN knockout (sln-/-) mouse model and demonstrated that ablation of SLN enhances atrial SERCA pump activity. The present study is designed to determine the long-term effects of enhanced SERCA activity on atrial remodeling in the sln-/- mice. Calcium transient measurements show an increase in atrial SR Ca(2+) load and twitch Ca(2+) transients. Patch-clamping experiments demonstrate activation of the forward mode of sodium/calcium exchanger, increased L-type Ca(2+) channel activity, and prolongation of action potential duration at 90% repolarization in the atrial myocytes of sln-/- mice. Spontaneous Ca(2+) waves, delayed afterdepolarization, and triggered activities are frequent in the atrial myocytes of sln-/- mice. Furthermore, loss of SLN in atria is associated with increased interstitial fibrosis and altered expression of genes encoding collagen and other extracellular matrix proteins. Our results also show that the sln-/- mice are susceptible to atrial arrhythmias upon aging. Together, these findings indicate that ablation of SLN results in increased SERCA activity and SR Ca(2+) load, which, in turn, could cause abnormal intracellular Ca(2+) handling and atrial remodeling.  相似文献   

15.

Background

Neuroblastomas are the most common extracranial solid tumors in children. Neuroblastomas are derived from immature cells of the sympathetic nervous system and are characterized by clinical and biological heterogeneity. Hypoxia has been linked to tumor progression and increased malignancy. Intermittent hypoxia or repeated episodes of hypoxia followed by re-oxygenation is a common phenomenon in solid tumors including neuroblastoma and it has a significant influence on the outcome of therapies. The present study focuses on how intermittent hypoxia modulates the stem-like properties and differentiation in neuroblastoma cells.

Methods and Findings

Cell survival was assessed by clonogenic assay and cell differentiation was determined by morphological characterization. Hypoxia-inducible genes were analyzed by real-time PCR and Western blotting. Immunofluorescence, real-time PCR and Western blotting were utilized to study stem cell markers. Analysis of neural crest / sympathetic nervous system (SNS) markers and neuronal differentiation markers were done by real-time PCR and Western blotting, respectively. Intermittent hypoxia stimulated the levels of HIF-1α and HIF-2 α proteins and enhanced stem-like properties of neuroblastoma cells. In intermittent hypoxia-conditioned cells, downregulation of SNS marker genes and upregulation of genes expressed in the neural crest were observed. Intermittent hypoxia suppressed the retinoic acid-induced differentiation of neuroblastoma cells.

Conclusions

Our results suggest that intermittent hypoxia enhances stem-like characteristics and suppresses differentiation propensities in neuroblastoma cells.  相似文献   

16.
Obstructive sleep apnoea syndrome (OSAS) represents a highly prevalent disease and is recognized as a risk factor for the development of various cardiovascular disorders. The pathogenesis of cardiovascular complications in OSAS is not completely understood, but the unique form of hypoxia with repetitive short cycles of desaturation followed by rapid reoxygenation termed intermittent hypoxia (IH) is likely to play a significant role. There is increasing evidence that IH leads to a preferential activation of inflammatory over adaptive pathways. This promotes activation of various inflammatory cells, particularly lymphocytes and monocytes, with the downstream consequence of expression of pro-inflammatory cytokines, chemokines and adhesion molecules that may contribute to endothelial dysfunction. This review provides a critical analysis of the current evidence of inflammatory mechanisms initiated by IH that may contribute to the cardiovascular pathogenesis in OSAS.  相似文献   

17.
Several animal models of atrial fibrillation (AF) have been developed that demonstrate either atrial structural remodeling or atrial electrical remodeling, but the characteristics and spatiotemporal organization of the AF between the models have not been compared. Thirty-nine dogs were divided into five groups: rapid atrial pacing (RAP), chronic mitral regurgitation (MR), congestive heart failure (CHF), methylcholine (Meth), and control. Right and left atria (RA and LA, respectively) were simultaneously mapped during episodes of AF in each animal using high-density (240 electrodes) epicardial arrays. Multiple 30-s AF epochs were recorded in each dog. Fast Fourier transform was calculated every 1 s over a sliding 2-s window, and dominant frequency (DF) was determined. Stable, discrete, high-frequency areas were seen in none of the RAP or control dogs, four of nine MR dogs, four of six CHF dogs, and seven of nine Meth dogs in either the RA or LA or both. Average DFs in the Meth model were significantly greater than in all other models in both LA and RA except LA DFs in the RAP model. The RAP model was the only one with a consistent LA-to-RA DF gradient (9.5 +/- 0.2 vs. 8.3 +/- 0.3 Hz, P < 0.00005). The Meth model had a higher spatial and temporal variance of DFs and lower measured organization levels compared with the other AF models, and it was the only model to show a linear relationship between the highest DF and dispersion (R(2) = 0.86). These data indicate that structural remodeling of atria (models known to have predominantly altered conduction) leads to an AF characterized by a stable high-frequency area, whereas electrical remodeling of atria (models known to have predominantly shortened refractoriness without significant conduction abnormalities) leads to an AF characterized by multiple high-frequency areas and multiple wavelets.  相似文献   

18.
Inheritance of phenotypic traits depends on two key events: replication of the determinant of that trait and partitioning of these copies between mother and daughter cells. Although these processes are well understood for nucleic acid–based genes, the mechanisms by which protein-only or prion-based genetic elements direct phenotypic inheritance are poorly understood. Here, we report a process crucial for inheritance of the Saccharomyces cerevisiae prion [PSI+], a self-replicating conformer of the Sup35 protein. By tightly controlling expression of a Sup35-GFP fusion, we directly observe remodeling of existing Sup35[PSI+] complexes in vivo. This dynamic change in Sup35[PSI+] is lost when the molecular chaperone Hsp104, a factor essential for propagation of all yeast prions, is functionally impaired. The loss of Sup35[PSI+] remodeling by Hsp104 decreases the mobility of these complexes in the cytosol, creates a segregation bias that limits their transmission to daughter cells, and consequently diminishes the efficiency of conversion of newly made Sup35 to the prion form. Our observations resolve several seemingly conflicting reports on the mechanism of Hsp104 action and point to a single Hsp104-dependent event in prion propagation.  相似文献   

19.
The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (Sa(O2)) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and Sa(O2) during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (VO2), expired minute ventilation (VE), and Sa(O2) were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2 (VE/VO2) and Sa(O2) during submaximal exercise. There were significant correlations among the changes in HVR at rest and in VE/VO2 and Sa(O2) during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号