首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistent staphylococcal infections often involve surface‐associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co‐ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.  相似文献   

2.
Biofilm formation is a co-operative behaviour, where microbial cells become embedded in an extracellular matrix. This biomolecular matrix helps manifest the beneficial or detrimental outcome mediated by the collective of cells. Bacillus subtilis is an important bacterium for understanding the principles of biofilm formation. The protein components of the B. subtilis matrix include the secreted proteins BslA, which forms a hydrophobic coat over the biofilm, and TasA, which forms protease-resistant fibres needed for structuring. TapA is a secreted protein also needed for biofilm formation and helps in vivo TasA-fibre formation but is dispensable for in vitro TasA-fibre assembly. We show that TapA is subjected to proteolytic cleavage in the colony biofilm and that only the first 57 amino acids of the 253-amino acid protein are required for colony biofilm architecture. Through the construction of a strain which lacks all eight extracellular proteases, we show that proteolytic cleavage by these enzymes is not a prerequisite for TapA function. It remains unknown why TapA is synthesised at 253 amino acids when the first 57 are sufficient for colony biofilm structuring; the findings do not exclude the core conserved region of TapA having a second role beyond structuring the B. subtilis colony biofilm.  相似文献   

3.
Biofilm‐grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline‐binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S. pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S. pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance.  相似文献   

4.
李瑞莲  王倬  杜昱光 《微生物学报》2017,57(8):1206-1218
难治性真菌感染的临床分析发现,病灶感染病原常以生物被膜的形态存在。生物被膜的形成可帮助真菌躲避宿主细胞免疫系统清除和药物的攻击,所造成的持续性感染严重威胁人类健康,因此,认识研究真菌生物被膜及其耐药机理对于防治临床真菌感染有着重大意义。白色念珠菌是一种临床感染常见的条件性致病菌,也是目前真菌生物被膜研究的主要研究模型。白色念珠菌生物被膜主要由多糖、蛋白质和DNA构成,其形成由微生物间的群体感应调控,并受到环境中营养成分及其附着物表面性质影响。研究发现,胞外基质的屏障作用、耐药基因的表达等机制与生物被膜耐药性的产生密切相关。本文就白色念珠菌生物被膜的形成过程、结构组成、形成的影响因素、现有研究模型、耐药机制和治疗策略等几个方面介绍近年来的研究进展。  相似文献   

5.
Candida albicans is a major human fungal pathogen causing mucosal and deep tissue infections of which the majority is associated with biofilm formation on medical implants. Biofilms have a huge impact on public health, as fungal biofilms are highly resistant against most antimycotics. Animal models of biofilm formation are indispensable for improving our understanding of biofilm development inside the host, their antifungal resistance and their interaction with the host immune defence system. In currently used models, evaluation of biofilm development or the efficacy of antifungal treatment is limited to ex vivo analyses, requiring host sacrifice, which excludes longitudinal monitoring of dynamic processes during biofilm formation in the live host. In this study, we have demonstrated for the first time that non‐invasive, dynamic imaging and quantification of in vitro and in vivo C. albicans biofilm formation including morphogenesis from the yeast to hyphae state is feasible by using growth‐phase dependent bioluminescent C. albicans strains in a subcutaneous catheter model in rodents. We have shown the defect in biofilm formation of a bioluminescent bcr1 mutant strain. This approach has immediate applications for the screening and validation ofantimycotics under in vivo conditions, for studying host–biofilm interactions in different transgenic mouse models and for testing the virulence of luminescent C. albicans mutants, hereby contributing to a better understanding of the pathogenesis of biofilm‐associated yeast infections.  相似文献   

6.

Background  

Non-typeable Haemophilus influenzae biofilm formation is implicated in a number of chronic infections including otitis media, sinusitis and bronchitis. Biofilm structure includes cells and secreted extracellular matrix that is "slimy" and believed to contribute to the antibiotic resistant properties of biofilm bacteria. Components of biofilm extracellular matrix are largely unknown. In order to identify such biofilm proteins an ex-vivo biofilm of a non-typeable Haemophilus influenzae isolate, originally from an otitis media patent, was produced by on-filter growth. Extracellular matrix fraction was subjected to proteomic analysis via LC-MS/MS to identify proteins.  相似文献   

7.
8.
Biofilm formation in Bacillus subtilis requires the differentiation of a subpopulation of cells responsible for the production of the extracellular matrix that structures the biofilm. Differentiation of matrix‐producing cells depends, among other factors, on the FloT and YqfA proteins. These proteins are present exclusively in functional membrane microdomains of B. subtilis and are homologous to the eukaryotic lipid raft‐specific flotillin proteins. In the absence of FloT and YqfA, diverse proteins normally localized to the membrane microdomains of B. subtilis are not functional. Here we show that the absence of FloT and YqfA reduces the level of the septal‐localized protease FtsH. The flotillin homologues FloT and YqfA are occasionally present at the midcell in exponentially growing cells and the absence of FloT and YqfA negatively affects FtsH concentration. Biochemical experiments indicate a direct interaction between FloT/YqfA and FtsH. Moreover, FtsH is essential for the differentiation of matrix producers and hence, biofilm formation. This molecular trigger of biofilm formation may therefore be used as a target for the design of new biofilm inhibitors. Accordingly, we show that the small protein SpoVM, known to bind to and inhibit FtsH activity, inhibits biofilm formation in B. subtilis and other distantly related bacteria.  相似文献   

9.
10.
Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant‐associated infections. Nonetheless, large proportions of invasive Staphylococcus epidermidis isolates fail to form a biofilm in vitro. We here tested the hypothesis that this apparent paradox is related to the existence of superimposed regulatory systems suppressing a multicellular biofilm life style in vitro. Transposon mutagenesis of clinical significant but biofilm‐negative S. epidermidis 1585 was used to isolate a biofilm positive mutant carrying a Tn917 insertion in sarA, chief regulator of staphylococcal virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via overexpression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp‐ and eDNA‐dependent biofilm formation. Given the importance of SarA as a positive regulator of polysaccharide mediated cell aggregation, the regulator enables S. epidermidis to switch between mechanisms of biofilm formation, ensuring S. epidermidis adaptation to hostile environments.  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic human pathogen whose survival is aided by forming communities known as biofilms, in which cells are encased in a self‐produced matrix. We devised a mutant screen based on colony morphology to identify additional genes with previously unappreciated roles in biofilm formation. Our screen, which identified most known biofilm‐related genes, also uncovered PA14_16550 and PA14_69700, deletions of which abrogated and augmented biofilm formation respectively. We also identified ptsP, which encodes enzyme I of the nitrogen‐regulated phosphotransferase (PTSNtr) system, as being important for cyclic‐di‐GMP production and for biofilm formation. Further experiments showed that biofilm formation is hindered in the absence of phosphotransfer through the PTSNtr, but only in the presence of enzyme II (PtsN), the putative regulatory module of the PTSNtr. These results implicate unphosphorylated PtsN as a negative regulator of biofilm formation and establish one of the first known roles of the PTSNtr in P. aeruginosa.  相似文献   

12.
Abstract

This study evaluated adhesion and biofilm formation by Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis on surfaces of titanium (Ti) and titanium coated with F18 Bioactive Glass (BGF18). Biofilms were grown and the areas coated with biofilm were determined after 2, 4 and 8?h. Microscopy techniques were applied in order to visualize the structure of the mature biofilm and the extracellular matrix. On the BGF18 specimens, there was less biofilm formation by C. albicans and S. epidermidis after incubation for 8?h. For P. aeruginosa biofilm, a reduction was observed after incubation for 4?h, and it remained reduced after 8?h on BGF18 specimens. All biofilm matrices seemed to be thicker on BGF18 surface than on titanium surfaces. BGF18 showed significant anti-biofilm activity in comparison with Ti in the initial periods of biofilm formation; however, there was extensive biofilm after incubation for 48?h.  相似文献   

13.
Aims: This study detected and characterized the extracellular DNA (eDNA) in the biofilm extracellular polymeric substance (EPS) matrix of Helicobacter pylori and investigated the role of such component in the biofilm development. Methods and Results: Extracellular DNA was purified and characterized in a 2‐day‐old mature biofilm developed by the reference strain H. pylori ATCC 43629, the clinical isolate H. pylori SDB60 and the environmental strain H. pylori MDC1. Subsequently, the role of eDNA in the H. pylori biofilm was evaluated by adding DNase I during biofilm formation and on mature biofilms. Extracellular DNA was detected in the 2‐day‐old EPS biofilm matrix of all analysed H. pylori strains. The DNA fingerprintings, performed by RAPD analysis, on eDNA and intracellular DNA (iDNA), showed some remarkable differences. The data obtained by microtitre biofilm assay as well as colony forming unit count and CLSM (confocal laser scanning microscopy) qualitative analysis did not show any significant differences between the DNase I‐treated biofilms and the corresponding not treated controls both in formation and on mature biofilms. Conclusions: In this study, we provide evidence that eDNA is a component of the EPS matrix of H. pylori biofilm. The different profiles of eDNA and iDNA indicate that lysed cells are not the primary source of eDNA release, suggesting that other active mechanisms might be involved in this process. Moreover, the biomass assay suggests that eDNA may not be the main component of biofilm matrix, suggesting that it could be primarily involved in other mechanisms such as recombination processes, via transformation, contributing to the wide genomic variability of this micro‐organism defined as a ‘quasi‐species’. Significance and Impact of the Study: The presence of eDNA in H. pylori biofilm can contribute to the active dynamic exchange of information aimed to reach the best condition for the bacterial survival in the host and in the environment.  相似文献   

14.
15.
Liu  Musang  Zheng  Hailin  Zeng  Rong  Liang  Guanzhao  Zheng  Nan  Liu  Weida 《Mycopathologia》2021,186(3):387-397

Aspergillus fumigatus (A. fumigatus) is the most common airborne opportunistic fungal pathogen. Biofilm formation is one of the main pathogenic mechanisms of A. fumigatus. During the past decades, A. fumigatus azole resistance has become prevalent due to the medical and agricultural use of antifungal drugs and fungicides. Until now, the role of fungal biofilms in azole resistance of A. fumigatus remains unclear. In the present study, we compared biofilm drug susceptibility and biofilm formation under itraconazole of azole-resistant strains, sensitive strains, and standard strains, separately. The biofilm viability and matrix thickness at the early and the late stage were measured by XTT assay and Calcofluor white. Our results showed that the sessile minimum inhibitory concentration of itraconazole, which describing the inhibition of drugs on fungi sessile with biofilm, was much higher than the traditional minimal inhibitory concentration of itraconazole. Additionally, low concentrations of itraconazole inhibited biofilm formation of A. fumigatus strains. Notably, biofilm formation by azole-resistant strains could not be inhibited by high concentrations of itraconazole but could be effectively restrained by low concentrations of micafungin, revealing the efficacy of a cell-wall inhibitor to disrupt A. fumigatus biofilm formation. However, late-stage biofilms of both azole-resistant strains and standard strains were hard to disrupt using itraconazole. We found that itraconazole was effective to prevent A. fumigatus biofilm formation at the early stage. For the treatment of A. fumigatus biofilm, our findings suggest that an early-stage preventive strategy is preferred and micafungin is effective to control the azole-resistant strain infection.

  相似文献   

16.
Pseudomonas putida OUS82 biofilm dispersal was previously shown to be dependent on the gene PP0164 (here designated lapG). Sequence and structural analysis has suggested that the LapG geneproduct belongs to a family of cysteine proteinases that function in the modification of bacterial surface proteins. We provide evidence that LapG is involved in P. putida OUS82 biofilm dispersal through modification of the outer membrane‐associated protein LapA. While the P. putida lapG mutant formed more biofilm than the wild‐type, P. putida lapA and P. putida lapAG mutants displayed decreased surface adhesion and were deficient in subsequent biofilm formation, suggesting that LapG affects LapA, and that the LapA protein functions both as a surface adhesin and as a biofilm matrix component. Lowering of the intracellular c‐di‐GMP level via induction of an EAL domain protein led to dispersal of P. putida wild‐type biofilm but did not disperse P. putida lapG biofilm, indicating that LapG exerts its activity on LapA in response to a decrease in the intracellular c‐di‐GMP level. In addition, evidence is provided that associated to LapA a cellulase‐degradable exopolysaccharide is part of the P. putida biofilm matrix.  相似文献   

17.
Aims: To investigate the structural organization and dynamics of exopolysaccharides (EPS) matrix and microcolonies formation by Streptococcus mutans during the biofilm development process. Methods and Results: Biofilms of Strep. mutans were formed on saliva‐coated hydroxyapatite (sHA) discs in the presence of glucose or sucrose (alone or mixed with starch). At specific time points, biofilms were subjected to confocal fluorescence imaging and computational analysis. EPS matrix was steadily formed on sHA surface in the presence of sucrose during the first 8 h followed by a threefold biomass increase between 8 and 30 h of biofilm development. The initial formation and further development of three‐dimensional microcolony structure occurred concomitantly with EPS matrix synthesis. Tridimensional renderings showed EPS closely associated with microcolonies throughout the biofilm development process forming four distinct domains (i) between sHA surface and microcolonies, (ii) within, (iii) covering and (iv) filling the spaces between microcolonies. The combination of starch and sucrose resulted in rapid formation of elevated amounts of EPS matrix and faster assembly of microcolonies by Strep. mutans, which altered their structural organization and susceptibility of the biofilm to acid killing (vs sucrose‐grown biofilms; P < 0·05). Conclusions: Our data indicate that EPS modulate the development, sequence of assembly and spatial distribution of microcolonies by Strep. mutans. Significance and Impact of the Study: Simultaneous visualization and analysis of EPS matrix and microcolonies provide a more precise examination of the structural organization of biofilms than labelling bacteria alone, which could be a useful approach to elucidate the exact mechanisms by which Strep. mutans influences oral biofilm formation and possibly identify novel targets for effective antibiofilm therapies.  相似文献   

18.
Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches.  相似文献   

19.
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.  相似文献   

20.
Campylobacter jejuni is responsible for the most common bacterial foodborne gastroenteritis. Despite its fastidious growth, it can survive harsh conditions through biofilm formation. In this work, fluorescence lectin-binding analysis was used to determine the glycoconjugates present in the biofilm matrix of two well-described strains. Screening of 72 lectins revealed strain-specific patterns with six lectins interacting with the biofilm matrix of both strains. The most common sugar moiety contained galactose and N-acetylgalactosamine. Several lectins interacted with N-acetylglucosamine and sialic acid, probably originated from the capsular polysaccharides, lipooligosaccharides and N-glycans of C. jejuni. In addition, glycoconjugates containing mannose and fucose were detected within the biofilm, which have not previously been found in the C. jejuni envelope. Detection of thioflavin T and curcumin highlighted the presence of amyloids in the cell envelope without association with specific cell appendages. The lectins ECA, GS-I, HMA and LEA constitute a reliable cocktail to detect the biofilm matrix of C. jejuni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号