首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many psychotropic substances used either for medications or illicit recreational purposes are able to produce an increase in extracellular serotonin (5HT) in the CNS. 5HT is well known to improve mood; however, only when the levels of its release are in an appropriate range. Excessive 5HT is harmful, and will generally result in serotonin syndrome. To date, clinical diagnosis of serotonin syndrome relies exclusively on observation of symptoms because of a lack of available laboratory tests. The goal of this study was to characterize the onset of the syndrome using laboratory settings to determine excessive 5HT‐evoked neurological abnormalities. Experiments were carried out in rats with the syndrome being elicited by three groups of 5HT‐promoting drugs: (i) (±)‐3,4‐methylenedioxymethamphetamine (MDMA); (ii) a combination of the monoamine oxidase inhibitor clorgyline with the 5HT precursor 5‐hydroxytryptophan; (iii) clorgyline combined with the serotonin‐selective reuptake inhibitor paroxetine. The onset of the syndrome was characterized by electroencephalography (EEG), tremor, and brain/plasma 5HT tests. We found that a mild syndrome was associated with reduced EEG amplitudes while a severe syndrome strongly with seizure‐like EEG activity and increased tremor activity. The occurrence of the syndrome was confirmed with microdialysis, showing excessive 5HT efflux in brain dialysate and the increased concentration of unbound 5HT in the plasma. Our findings suggest that the syndrome onset can be revealed with EEG recording, measurements of tremor activity and changes of unbound 5HT concentration in the plasma.  相似文献   

2.
Chronic stress represents a major environmental risk factor for mood disorders in vulnerable individuals. The neurobiological mechanisms underlying these disorders involve serotonergic and endocannabinoid systems. In this study, we have investigated the relationships between these two neurochemical systems in emotional control using genetic and imaging tools. CB1 cannabinoid receptor knockout mice (KO) and wild‐type littermates (WT) were exposed to chronic restraint stress. Depressive‐like symptoms (anhedonia and helplessness) were produced by chronic stress exposure in WT mice. CB1 KO mice already showed these depressive‐like manifestations in non‐stress conditions and the same phenotype was observed after chronic restraint stress. Chronic stress similarly impaired long‐term memory in both genotypes. In addition, brain levels of serotonin transporter (5‐HTT) were assessed using positron emission tomography. Decreased brain 5‐HTT levels were revealed in CB1 KO mice under basal conditions, as well as in WT mice after chronic stress. Our results show that chronic restraint stress induced depressive‐like behavioral alterations and brain changes in 5‐HTT levels similarly to those revealed in CB1 KO mice in non‐stressed conditions. These results underline the relevance of chronic environmental stress on serotonergic and endocannabinoid transmission for the development of depressive symptoms.

  相似文献   


3.
4.
Ethanol and 3, 4‐Methylenedioxymethamphetamine (MDMA) are popular recreational drugs widely abused by adolescents that may induce neurotoxic processes associated with behavioural alterations. Adolescent CD1 mice were subjected to ethanol intake using the drinking in the dark (DID) procedure, acute MDMA or a combination. Considering that both drugs of abuse cause oxidative stress in the brain, protein oxidative damage in different brain areas was analysed 72 h after treatment using a proteomic approach. Damage to specific proteins in treated animals was significant in the hippocampus but not in the prefrontal cortex. The damaged hippocampus proteins were then identified by mass spectrometry, revealing their involvement in energy metabolism, structural function, axonal outgrowth and stability, and neurotransmitter release. Mice treated with MDMA displayed higher oxidative damage than ethanol‐treated mice. To determine whether this oxidative damage was affecting hippocampus activity, declarative memory was evaluated at 72 h after treatment using the object recognition assay and the radial arm maze. Although acquisition in the radial arm maze was not impaired by ethanol intake, MDMA treatment impaired long‐term memory in both tests. Therefore, oxidative damage to specific proteins observed under MDMA treatment affects important cellular function on the hippocampus that may contribute to declarative memory deficits.  相似文献   

5.
Evidence is accumulating to suggest that 3,4‐methylenedioxymethamphetamine (MDMA) has neurotoxic and neuroinflammatory properties. MDMA is composed of two enantiomers with different biological activities. In this study, we evaluated the in vivo effects of S(+)‐MDMA, R(?)‐MDMA, and S(+)‐MDMA in combination with R(?)‐MDMA on microglial and astroglial activation compared with racemic MDMA, by assessment of complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) immunoreactivity in the mouse striatum, nucleus accumbens, motor cortex, and substantia nigra. Motor activity and body temperature were also measured, to elucidate the physiological modifications paired with the observed glial changes. Similar to racemic MDMA (4 × 20 mg/kg), S(+)‐MDMA (4 × 10 mg/kg) increased both CD11b and GFAP in the striatum, although to a lower degree, whereas R(?)‐MDMA (4 × 10 mg/kg) did not induce any significant glial activation. Combined administration of S(+) plus R(?)‐MDMA did not induce any further activation compared with S(+)‐MDMA. In all other areas, only racemic MDMA was able to slightly activate the microglia, but not the astroglia, whereas enantiomers had no effect, either alone or in combination. Racemic MDMA and S(+)‐MDMA similarly increased motor activity and raised body temperature, whereas R(?)‐MDMA affected neither body temperature nor motor activity. Interestingly, the increase in body temperature was correlated with glial activation. The results show that no synergism, but only additivity of effects, is caused by the combined administration of S(+)‐ and R(?)‐MDMA, and underline the importance of investigating the biochemical and behavioral properties of the two MDMA enantiomers to understand their relative contribution to the neuroinflammatory and neurotoxic effects of MDMA.  相似文献   

6.
We have synthesized and evaluated several new ligands for imaging the norepinephrine transporter (NET) system in baboons with positron emission tomography (PET). Ligands possessing high brain penetration, high affinity and selectivity, appropriate lipophilicity (log P = 1.0-3.5), high plasma free fraction and reasonable stability in plasma were selected for further studies. Based on our characterization studies in baboons, including 11C-labeled (R)-nisoxetine (Nis), oxaprotiline (Oxap), lortalamine (Lort) and new analogs of methylreboxetine (MRB), in conjunction with our earlier evaluation of 11C and 18F derivatives of reboxetine, MRB and their individual (R,R) and (S,S) enantiomers, we have identified the superiority of (S,S)-[11C]MRB and the suitability of MRB analogs [(S,S)-[11C]MRB > (S,S)-[11C]3-Cl-MRB > (S,S)-[18F]fluororeboxetine] as potential NET ligands for PET. In contrast, Nis, Oxap and Lort displayed high uptake in striatum (higher than in thalamus). The use of these ligands is further limited by high non-specific binding and relatively low specific signal, as is characteristic of many earlier NET ligands. Thus, to our knowledge (S,S)-[11C]MRB remains by far the most promising NET ligand for PET studies.  相似文献   

7.
Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S‐ethyl N,N‐dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S‐methyl‐N,N‐diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic‐dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD.  相似文献   

8.
9.
Although numerous positron emission tomography (PET) studies with 18F‐fluoro‐deoxyglucose (FDG) have reported quantitative results on cerebral glucose kinetics and consumption, there is a large variation between the absolute values found in the literature. One of the underlying causes is the inconsistent use of the lumped constants (LCs), the derivation of which is often based on multiple assumptions that render absolute numbers imprecise and errors hard to quantify. We combined a kinetic FDG‐PET study with magnetic resonance spectroscopic imaging (MRSI) of glucose dynamics in Sprague–Dawley rats to obtain a more comprehensive view of brain glucose kinetics and determine a reliable value for the LC under isoflurane anaesthesia. Maps of Tmax/CMRglc derived from MRSI data and Tmax determined from PET kinetic modelling allowed to obtain an LC‐independent CMRglc. The LC was estimated to range from 0.33 ± 0.07 in retrosplenial cortex to 0.44 ± 0.05 in hippocampus, yielding CMRglc between 62 ± 14 and 54 ± 11 μmol/min/100 g, respectively. These newly determined LCs for four distinct areas in the rat brain under isoflurane anaesthesia provide means of comparing the growing amount of FDG‐PET data available from translational studies.

  相似文献   


10.
11.
The eastern‐Mediterranean Abies taxa, which include both widely distributed species and taxa with minuscule ranges, represent a good model to study the impacts of range size and fragmentation on the levels of genetic diversity and differentiation. To assess the patterns of genetic diversity and phylogenetic relationships among eastern‐Mediterranean Abies taxa, genetic variation was assessed by eight nuclear microsatellite loci in 52 populations of Abies taxa with a focus on those distributed in Turkey and the Caucasus. Both at the population and the taxon level, the subspecies or regional populations of Abies nordmanniana s.l. exhibited generally higher allelic richness, private allelic richness, and expected heterozygosity compared with Abies cilicica s.l. Results of both the Structure analysis and distance‐based approaches showed a strong differentiation of the two A. cilicica subspecies from the rest as well as from each other, whereas the subspecies of A. nordmanniana were distinct but less differentiated. ABC simulations were run for a set of scenarios of phylogeny and past demographic changes. For A. ×olcayana, the simulation gave a poor support for the hypothesis of being a taxon resulting from a past hybridization, the same is true for Abies equi‐trojani: both they represent evolutionary branches of Abies bornmuelleriana.  相似文献   

12.
While the mechanisms by which adult terrestrial plants deploy constitutive and induced responses to grazing pressure are well known, the means by which young aquatic plants defend themselves from herbivory are little studied. This study addresses nitrogen transport in the aquatic angiosperm Myriophyllum spicatum in response to herbivore exposure. Nitrogen tracers were used to monitor nitrogen uptake and reallocation in young plants in response to grazing by the generalist insect herbivore Acentria ephemerella. Total nitrogen content (N%) and patterns of nitrogen uptake and allocation (δ15N) were assessed in various plant tissues after 24 and 48 h. Following 24 h exposure to herbivore damage (Experiment 1), nitrogen content of plant apices was significantly elevated. This rapid early reaction may be an adaptation allowing the grazer to be sated as fast as possible, or indicate the accumulation of nitrogenous defense chemicals. After 48 h (Experiment 2), plants' tips showed depletion in nitrogen levels of ca. 60‰ in stem sections vulnerable to grazing. In addition, nitrogen uptake by grazed and grazing‐prone upper plant parts was reduced and nutrient allocation into the relatively secure lower parts increased. The results point to three conclusions: (1) exposure to an insect herbivore induces a similar response in immature M. spicatum as previously observed in mature terrestrial species, namely a rapid (within 48 h) reduction in the nutritional value (N%) of vulnerable tissues, (2) high grazing intensity (100% of growing tips affected) did not limit the ability of young plants to induce resistance; and (3) young plants exposed to herbivory exhibit different patterns of nutrient allocation in vulnerable and secure tissues. These results provide evidence of induced defense and resource reallocation in immature aquatic macrophytes which is in line with the responses shown for mature aquatic macrophytes and terrestrial plants.  相似文献   

13.
In this study we used recent (2010) and herbarium material (1980) of six bryophyte species to assess long‐term atmospheric deposition in natural forested areas in northern Spain. For this purpose, tissue nitrogen and carbon content, as well as δ13C and δ15N signatures of samples of Hypnum cupressiforme, Polytrichastrum formosum, Leucobryum juniperoideum, Rhytidiadelphus loreus, Homalothecium lutescens and Diplophyllum albicans were analysed and comparisons made between years and species. In addition, the usefulness of each of the six species was evaluated. The range of values observed was similar to that in other studies carried out in rural areas. Significantly lower values were found in 2010 for N (H. cupressiforme), δ15N (R. loreus and D. albicans), C (R. loreus) and δ13C (all except L. juniperoideum). Our natural areas are thus now less influenced by atmospheric pollutants than they were, most probably due to changes in some traditional local activities. Differences were observed between species for all the four parameters studied, so different species must not be analysed together. Finally, R. loreus and H. lutescens seem to be good bioindicators, sensitive even with a few samples, although further studies are needed to corroborate their usefulness.  相似文献   

14.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

15.
Removing agricultural cellulosic residues from fields for the production of ‘second generation biofuels'has the potential to profoundly alter C and N cycling in soil, increasing the risk of soil organic matter depletion and favoring soil–atmosphere gaseous exchanges. However, these negative impacts could potentially be offset by amending the soil with the solid by‐product which is generated during bioethanol production. In a 100 days laboratory study, we investigated the fate of C and N after soil amendment with doubly labeled (13C, 15N) wheat residue (WR) and the corresponding bioethanol by‐product (i.e. nonfermentable wheat residue NFWR) with and without extra N addition. Substituting WR with the corresponding amount of recovered bioethanol by‐product partially compensated the C losses of full crop residue removal. When the equivalent amount of C was added as WR and NFWR, NFWR‐derived C was found in significantly higher proportion in macroaggregates in soil (17.0 vs. 8.9%) after 100 days. Addition of both WR and NFWR reduced soil organic C (SOC) mineralization, i.e. it caused a negative priming effect in soil. However, this pattern was reversed when extra N was added. Both WR and NFWR increased the proportion of soil water‐stable macroaggregates from 16% (in control) to 20–24% (in the different treatments). The results suggest that the more recalcitrant compounds derived from bioethanol production may stabilize more strongly and persist within the protected fractions of SOM pools. Our study demonstrates that NFWR, compared with WR application, neither increased N2O emissions nor had a negative impact on aggregate formation in the midterm. This demonstrates that NFWR has potential for replenishing SOC stocks.  相似文献   

16.
The D4 dopamine receptor belongs to the D2‐like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high‐affinity D4 receptor‐selective ligand N‐{2‐[4‐(3‐cyanopyridin‐2‐yl)piperazin‐1‐yl]ethyl}‐3‐[11C]methoxybenzamide ([11C] 2 ) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents.  相似文献   

17.
The oviduct is a very thin organ with a very tortuous appearance. It is divided into three segments: the infundibulum, the ampulla and the isthmus. Particularly, the oviduct of the viscacha lacks the intramural portion described in other species. The mucosa shows longitudinal pleats. The free edge of the infundibulum ends as small fimbriae that are of variable length and do not completely cover the ovary. The proportion of ciliated and secretory epithelial cells varied both in relation to the segments of the oviduct analysed and to the physiological state (anoestrus, follicular phase, early pregnancy and late pregnancy). The glycocalix and the apical region of the superficial epithelial cells are PAS and alcian‐blue positive. The muscular layers vary in thickness in different regions. Some lectins such as UEA‐1 and DBA showed variations in the binding pattern during the different physiological stages analysed whereas RCA‐1and WGA had a very stable pattern.  相似文献   

18.
Within certain regions in East Africa, the butterfly Danaus chrysippus (L.) shows female‐biased population sex ratio, because of the production by some females of all‐female broods, as a result of infection by maternally inherited, male‐killing bacterium of the genus Spiroplasma. In this study, we describe a 3‐year field survey for the population dynamics of the male‐killing Spiroplasma in D. chrysippus in four independent localities, namely Uganda, Ghana, Sudan and Madagascar. The prevalence of the bacterium was found to show extensive variations at multiple scales among different sites, in various countries, seasons and years. A novel, selection‐based hypothesis was suggested to explain the high variability of male‐killer prevalence over space and time, based on the existence of an adaptive link between larval food‐plant density and the magnitude of resource reallocation fitness advantage for the male‐killer.  相似文献   

19.
The main objective of this investigation was to test the hypothesis that brain serotonin (5-HT) synthesis, as measured by trapping of alpha-[(11)C]methyl-L-tryptophan (alpha-MTrp) using positron emission tomography (PET), can be modulated by changes in blood oxygen. The study involved six healthy participants (three male and three female), who breathed a 15% or 60% oxygen mixture starting 15 min before the injection of tracer and continuing during the entire acquisition period. Participants were injected with up to 12m Ci of alpha-MTrp. Two sets of PET images were acquired while the participants were breathing each of the oxygen mixtures and, after reconstruction, all images were converted into brain functional images illustrating the brain trapping constant K(*) (microL/g/min). The K(*) values were obtained for 12 regions of interest outlined on the magnetic resonance images. The K(*) values obtained at high and low blood oxygen content were compared by paired statistics using Tukey's post hoc correction. As there were no difference in plasma tryptophan concentrations, these K(*) values are directly related to regional 5-HT synthesis. The results showed highly significant increases (50% on average) in brain serotonin synthesis (K(*) values) at high (mean value of 223+/-41 mmHg) relative to low (mean value 77.1+/-7.7 mmHg) blood oxygen levels. This suggests that tryptophan hydroxylase is not saturated with oxygen in the living human brain and that increases in blood oxygen can elevate brain serotonin synthesis.  相似文献   

20.
Plant growth‐promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth‐promoting characteristics, such as indole‐3‐acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio‐inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non‐native strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号