首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cobalamin (vitamin B12) production in Bacillus megaterium has served as a model system for the systematic evaluation of single and multiple directed molecular and genetic optimization strategies. Plasmid and genome-based overexpression of genes involved in vitamin B12 biosynthesis, including cbiX, sirA, modified hemA, the operons hemAXCDBL and cbiXJCDETLFGAcysGAcbiYbtuR, and the regulatory gene fnr, significantly increased cobalamin production. To reduce flux along the heme branch of the tetrapyrrole pathway, an antisense RNA strategy involving silencing of the hemZ gene encoding coproporphyrinogen III oxidase was successfully employed. Feedback inhibition of the initial enzyme of the tetrapyrrole biosynthesis, HemA, by heme was overcome by stabilized enzyme overproduction. Similarly, the removal of the B12 riboswitch upstream of the cbiXJCDETLFGAcysGAcbiYbtuR operon and the recombinant production of three different vitamin B12 binding proteins (glutamate mutase GlmS, ribonucleotide triphosphate reductase RtpR and methionine synthase MetH) partly abolished B12-dependent feedback inhibition. All these strategies increased cobalamin production in B. megaterium. Finally, combinations of these strategies enhanced the overall intracellular vitamin B12 concentrations but also reduced the volumetric cellular amounts by placing the organism under metabolic stress.  相似文献   

5.
6.
Vitamin B12 (cobalamin) is a major cofactor required by most marine microbes, but only produced by a few prokaryotes in the ocean, which is globally B12-depleted. Despite the ecological importance of B12, the seasonality of B12 metabolisms and the organisms involved in its synthesis in the ocean remain poorly known. Here we use metagenomics to assess the monthly dynamics of B12-related pathways and the functional diversity of associated microbial communities in the coastal NW Mediterranean Sea over 7 years. We show that genes related to potential B12 metabolisms were characterized by an annual succession of different organisms carrying distinct production pathways. During the most productive winter months, archaea (Nitrosopumilus and Nitrosopelagicus) were the main contributors to B12 synthesis potential through the anaerobic pathway (cbi genes). In turn, Alphaproteobacteria (HIMB11, UBA8309, Puniceispirillum) contributed to B12 synthesis potential in spring and summer through the aerobic pathway (cob genes). Cyanobacteria could produce pseudo-cobalamin from spring to autumn. Finally, we show that during years with environmental perturbations, the organisms usually carrying B12 synthesis genes were replaced by others having the same gene, thus maintaining the potential for B12 production. Such ecological insurance could contribute to the long-term functional resilience of marine microbial communities exposed to contrasting inter-annual environmental conditions.  相似文献   

7.
Many algae are auxotrophs for vitamin B12 (cobalamin), which they need as a cofactor for B12‐dependent methionine synthase (METH). Because only prokaryotes can synthesize the cobalamin, they must be the ultimate source of the vitamin. In the laboratory, a direct interaction between algae and heterotrophic bacteria has been shown, with bacteria supplying cobalamin in exchange for fixed carbon. Here we establish a system to study this interaction at the molecular level. In a culture of a B12‐dependent green alga Chlamydomonas nivalis, we found a contaminating bacterium, identified by 16S rRNA analysis as Mesorhizobium sp. Using the sequenced strain of M. loti (MAFF303099), we found that it was able to support the growth of B12‐dependent Lobomonas rostrata, another green alga, in return for fixed carbon. The two organisms form a stable equilibrium in terms of population numbers, which is maintained over many generations in semi‐continuous culture, indicating a degree of regulation. However, addition of either vitamin B12 or a carbon source for the bacteria perturbs the equilibrium, demonstrating that the symbiosis is mutualistic and facultative. Chlamydomonas reinhardtii does not require B12 for growth because it encodes a B12‐independent methionine synthase, METE, the gene for which is suppressed by addition of exogenous B12. Co‐culturing C. reinhardtii with M. loti also results in reduction of METE expression, demonstrating that the bacterium can deliver the vitamin to this B12‐independent alga. We discuss the implications of this for the widespread distribution of cobalamin auxotrophy in the algal kingdom.  相似文献   

8.
Light-induced carotenogenesis in Myxococcus xanthus is controlled by the B12-based CarH repressor and photoreceptor, and by a separate intricate pathway involving singlet oxygen, the B12-independent CarH paralogue CarA and various other proteins, some eukaryotic-like. Whether other myxobacteria conserve these pathways and undergo photoregulated carotenogenesis is unknown. Here, comparative analyses across 27 Myxococcales genomes identified carotenogenic genes, albeit arranged differently, with carH often in their genomic vicinity, in all three Myxococcales suborders. However, CarA and its associated factors were found exclusively in suborder Cystobacterineae, with carA-carH invariably in tandem in a syntenic carotenogenic operon, except for Cystobacter/Melittangium, which lack CarA but retain all other factors. We experimentally show B12-mediated photoregulated carotenogenesis in representative myxobacteria, and a remarkably plastic CarH operator design and DNA binding across Myxococcales. Unlike the two characterized CarH from other phyla, which are tetrameric, Cystobacter CarH (the first myxobacterial homologue amenable to analysis in vitro) is a dimer that combines direct CarH-like B12-based photoregulation with CarA-like DNA binding and inhibition by an antirepressor. This study provides new molecular insights into B12-dependent photoreceptors. It further establishes the B12-dependent pathway for photoregulated carotenogenesis as broadly prevalent across myxobacteria and its evolution, exclusively in one suborder, into a parallel complex B12-independent circuit.  相似文献   

9.
Background. Cobalamin (vitamin B12) deficiency is associated with Helicobacter pylori infection. This study examined how serum vitamin B12 levels relate to gastric mucosa H. pylori density and histology, and to hematological findings in patients with minimal or no gastric atrophy. A second aim was to confirm that H. pylori eradication therapy increases serum B12. Materials and Methods. Biopsies of the gastric mucosa from a population of dyspeptic patients were graded for level of chronic inflammation, neutrophil activity, atrophy, and H. pylori density. A total of 145 H. pylori‐infected patients with minimal or no atrophy were included in the study. Serum cobalamin level, hemoglobin level, and mean corpuscular volume were measured in the 145 patients before eradication therapy, and in 65 of the subjects after treatment. The hematologic findings before and after eradication therapy and correlations between serum vitamin B12 level and histologic parameters, hematologic findings, and patient age were statistically analyzed. Results. There was no significant correlation between serum cobalamin level and patient age. Before treatment all the histopathological scores were inversely correlated with serum vitamin B12 level (p < .01) on univariate analysis. Only H. pylori density was significantly associated with B12 level on multivariate analysis. Serum hemoglobin and cobalamin levels were significantly increased after treatment, regardless of H. pylori eradication status (p < .001). Conclusion. The findings provide strong evidence that H. pylori infection is associated with cobalamin deficiency, and show that this is true even in patients with nonulcer dyspepsia and minimal or no gastric atrophy.  相似文献   

10.
The organometallic complex coenzyme B12 (adenosyl cobalamin, AdoCbl) is not only an essential coenzyme in many biochemical reactions of most if not all living organisms but has lately been shown to play a crucial role in the regulation of B12 related genes. As a consequence, coenzyme B12 has been a target of intense research. However, the investigations of AdoCbl have often been hampered due to its high light-sensitivity leading to decomposition of the compound within a few seconds. Here, we describe a strategy to synthesize more light-stable coenzyme B12 analogs, which show similar steric properties as adenosyl cobalamin. The synthesis, structural characterization as well as the pH dependent “base-on/base-off” behavior of cyanide bridged vitamin B12 conjugates with either a cis-[(NH3)2Pt]2+ or an [enPt]2+ moiety, leading to cis-[(NH3)2PtCl-vitB12]+ (1) and [enPtCl-vitB12]+ (2) are reported. The subsequent reaction of cis-[(NH3)2PtCl-vitB12]+ with the model nucleobase 9-methyladenine leads to the corresponding adduct, where the adenine moiety is coordinated to the Pt2+ center either via N1 or N7. This compound is light-stable and harbors the adenine moiety in the same distance of 5 Å above the corrin plane as present in the highly light-sensitive adenosyl cobalamin.  相似文献   

11.
Coenzymes are essential across all domains of life. B vitamins (B1‐thiamin, B2‐riboflavin, B3‐niacin, B5‐pantothenate, B6‐pyridoxine, B7‐biotin, and B12‐cobalamin) represent the largest class of coenzymes, which participate in a diverse set of reactions including C1‐rearrangements, DNA repair, electron transfer, and fatty acid synthesis. B vitamin structures range from simple to complex heterocycles, yet, despite this complexity, multiple lines of evidence exist for their ancient origins including abiotic synthesis under putative early Earth conditions and/or meteorite transport. Thus, some of these critical coenzymes likely preceded life on Earth. Some modern organisms can synthesize their own B vitamins de novo while others must either scavenge them from the environment or establish a symbiotic relationship with a B vitamin producer. B vitamin requirements are widespread in some of the most ancient metabolisms including all six carbon fixation pathways, sulfate reduction, sulfur disproportionation, methanogenesis, acetogenesis, and photosynthesis. Understanding modern metabolic B vitamin requirements is critical for understanding the evolutionary conditions of ancient metabolisms as well as the biogeochemical cycling of critical elements such as S, C, and O.  相似文献   

12.
Cobalamin (vitamin B12) is a complex metabolite and essential cofactor required by many branches of life, including most eukaryotic phytoplankton. Algae and other cobalamin auxotrophs rely on environmental cobalamin supplied from a relatively small set of cobalamin-producing prokaryotic taxa. Although several Bacteria have been implicated in cobalamin biosynthesis and associated with algal symbiosis, the involvement of Archaea in cobalamin production is poorly understood, especially with respect to the Thaumarchaeota. Based on the detection of cobalamin synthesis genes in available thaumarchaeotal genomes, we hypothesized that Thaumarchaeota, which are ubiquitous and abundant in aquatic environments, have an important role in cobalamin biosynthesis within global aquatic ecosystems. To test this hypothesis, we examined cobalamin synthesis genes across sequenced thaumarchaeotal genomes and 430 metagenomes from a diverse range of marine, freshwater and hypersaline environments. Our analysis demonstrates that all available thaumarchaeotal genomes possess cobalamin synthesis genes, predominantly from the anaerobic pathway, suggesting widespread genetic capacity for cobalamin synthesis. Furthermore, although bacterial cobalamin genes dominated most surface marine metagenomes, thaumarchaeotal cobalamin genes dominated metagenomes from polar marine environments, increased with depth in marine water columns, and displayed seasonality, with increased winter abundance observed in time-series datasets (e.g., L4 surface water in the English Channel). Our results also suggest niche partitioning between thaumarchaeotal and cyanobacterial ribosomal and cobalamin synthesis genes across all metagenomic datasets analyzed. These results provide strong evidence for specific biogeographical distributions of thaumarchaeotal cobalamin genes, expanding our understanding of the global biogeochemical roles played by Thaumarchaeota in aquatic environments.  相似文献   

13.
CrtJ from Rhodobacter capsulatus is a regulator of genes involved in the biosynthesis of haem, bacteriochlorophyll, carotenoids as well as structural proteins of the light harvesting‐II complex. Fluorescence anisotropy‐based DNA‐binding analysis demonstrates that oxidized CrtJ exhibits ~ 20‐fold increase in binding affinity over that of reduced CrtJ. Liquid chromatography electrospray tandem ionization mass spectrometric analysis using DAz‐2, a sulfenic acid (–SOH)‐specific probe, demonstrates that exposure of CrtJ to oxygen or to hydrogen peroxide leads to significant accumulation of a sulfenic acid derivative of Cys420 which is located in the helix–turn–helix (HTH) motif. In vivo labelling with 4‐(3‐azidopropyl)cyclohexane‐1,3‐dione (DAz‐2) shows that Cys420 also forms a sulfenic acid modification in vivo when cells are exposed to oxygen. Moreover, a Cys420 to Ala mutation leads to a ~ 60‐fold reduction of DNA binding activity while a Cys to Ser substitution at position 420 that mimics a cysteine sulfenic acid results in a ~ 4‐fold increase in DNA binding activity. These results provide the first example where sulfenic acid oxidation of a cysteine in a HTH‐motif leads to differential effects on gene expression.  相似文献   

14.
Cobamides are a group of compounds including vitamin B12 that can vary at the lower base position of the nucleotide loop. They are synthesized de novo by only a subset of prokaryotes, but some organisms encode partial biosynthesis pathways for converting one variant to another (remodeling) or completing biosynthesis from an intermediate (corrinoid salvaging). Here, we explore the cobamide specificity in Vibrio cholerae through examination of three natural variants representing major cobamide groups: commercially available cobalamin, and isolated pseudocobalamin and p-cresolylcobamide. We show that BtuB, the outer membrane corrinoid transporter, mediates the uptake of all three variants and the intermediate cobinamide. Our previous work suggested that V. cholerae could convert pseudocobalamin produced by cyanobacteria into cobalamin. In this work, cobamide specificity in V. cholerae is demonstrated by remodeling of pseudocobalamin and salvaging of cobinamide to produce cobalamin. Cobamide remodeling in V. cholerae is distinct from the canonical pathway requiring amidohydrolase CbiZ, and heterologous expression of V. cholerae CobS was sufficient for remodeling. Furthermore, function of V. cholerae cobamide-dependent methionine synthase MetH was robustly supported by cobalamin and p-cresolylcobamide, but not pseudocobalamin. Notably, the inability of V. cholerae to produce and utilize pseudocobalamin contrasts with enteric bacteria like Salmonella.  相似文献   

15.
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.  相似文献   

16.
Facultative phototrophs such as Rhodobacter sphaeroides can switch between heterotrophic and photosynthetic growth. This transition is governed by oxygen tension and involves the large‐scale production of bacteriochlorophyll, which shares a biosynthetic pathway with haem up to protoporphyrin IX. Here, the pathways diverge with the insertion of Fe2+ or Mg2+ into protoporphyrin by ferrochelatase or magnesium chelatase, respectively. Tight regulation of this branchpoint is essential, but the mechanisms for switching between respiratory and photosynthetic growth are poorly understood. We show that PufQ governs the haem/bacteriochlorophyll switch; pufQ is found within the oxygen‐regulated pufQBALMX operon encoding the reaction centre–light‐harvesting photosystem complex. A pufQ deletion strain synthesises low levels of bacteriochlorophyll and accumulates the biosynthetic precursor coproporphyrinogen III; a suppressor mutant of this strain harbours a mutation in the hemH gene encoding ferrochelatase, substantially reducing ferrochelatase activity and increasing cellular bacteriochlorophyll levels. FLAG‐immunoprecipitation experiments retrieve a ferrochelatase‐PufQ‐carotenoid complex, proposed to regulate the haem/bacteriochlorophyll branchpoint by directing porphyrin flux toward bacteriochlorophyll production under oxygen‐limiting conditions. The co‐location of pufQ and the photosystem genes in the same operon ensures that switching of tetrapyrrole metabolism toward bacteriochlorophyll is coordinated with the production of reaction centre and light‐harvesting polypeptides.  相似文献   

17.
Cobalamin (vitamin B12) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12. Extended coexistence can then drive gene loss, leading to greater algal–bacterial interdependence. In this study, we investigate how a recently evolved B12-dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12-independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12-dependent algae.  相似文献   

18.
Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase (METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve.  相似文献   

19.
The Archaeoglobus fulgidus gene af0721 encodes CbiXS, a small cobaltochelatase associated with the anaerobic biosynthesis of vitamin B12 (cobalamin). The protein was shown to have activity both in vivo and in vitro, catalyzing the insertion of Co2+ into sirohydrochlorin. The structure of CbiXS was determined in two different crystal forms and was shown to consist of a central mixed β-sheet flanked by four α-helices, one of which originates in the C-terminus of a neighboring molecule. CbiXS is about half the size of other Class II tetrapyrrole chelatases. The overall topography of CbiXS exhibits substantial resemblance to both the N- and C-terminal regions of several members of the Class II metal chelatases involved in tetrapyrrole biosynthesis. Two histidines (His10 and His74), are in similar positions as the catalytic histidine residues in the anaerobic cobaltochelatase CbiK (His145 and His207). In light of the hypothesis that suggests the larger chelatases evolved via gene duplication and fusion from a CbiXS-like enzyme, the structure of AF0721 may represent that of an “ancestral” precursor of class II metal chelatases.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

20.
Imerslund-Gräsbeck syndrome (IGS) or selective vitamin B12 (cobalamin) malabsorption with proteinuria is a rare autosomal recessive disorder characterized by vitamin B12 deficiency commonly resulting in megaloblastic anemia, which is responsive to parenteral vitamin B12 therapy and appears in childhood. Other manifestations include failure to thrive and grow, infections and neurological damage. Mild proteinuria (with no signs of kidney disease) is present in about half of the patients. Anatomical anomalies in the urinary tract were observed in some Norwegian patients. Vitamin B12 absorption tests show low absorption, not corrected by administration of intrinsic factor. The symptoms appear from 4 months (not immediately after birth as in transcobalamin deficiency) up to several years after birth. The syndrome was first described in Finland and Norway where the prevalence is about 1:200,000. The cause is a defect in the receptor of the vitamin B12-intrinsic factor complex of the ileal enterocyte. In most cases, the molecular basis of the selective malabsorption and proteinuria involves a mutation in one of two genes, cubilin (CUBN) on chromosome 10 or amnionless (AMN) on chromosome 14. Both proteins are components of the intestinal receptor for the vitamin B12-intrinsic factor complex and the receptor mediating the tubular reabsorption of protein from the primary urine. Management includes life-long vitamin B12 injections, and with this regimen, the patients stay healthy for decades. However, the proteinuria persists. In diagnosing this disease, it is important to be aware that cobalamin deficiency affects enterocyte function; therefore, all tests suggesting general and cobalamin malabsorption should be repeated after abolishment of the deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号