首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Clathrin is involved in the endocytosis and exocytosis of cellular proteins and the process of virus infection. We have previously demonstrated that large hepatitis delta antigen (HDAg-L) functions as a clathrin adaptor, but the detailed mechanisms of clathrin involvement in the morphogenesis of hepatitis delta virus (HDV) are not clear. In this study, we found that clathrin heavy chain (CHC) is a key determinant in the morphogenesis of HDV. HDAg-L with a single amino acid substitution at the clathrin box retained nuclear export activity but failed to interact with CHC and to assemble into virus-like particles. Downregulation of CHC function by a dominant-negative mutant or by short hairpin RNA reduced the efficiency of HDV assembly, but not the secretion of hepatitis B virus subviral particles. In addition, the coexistence of a cell-permeable peptide derived from the C terminus of HDAg-L significantly interfered with the intracellular transport of HDAg-L. HDAg-L, small HBsAg, and CHC were found to colocalize with the trans-Golgi network and were highly enriched on clathrin-coated vesicles. Furthermore, genotype II HDV, which assembles less efficiently than genotype I HDV does, has a putative clathrin box in its HDAg-L but interacted only weakly with CHC. The assembly efficiency of the various HDV genotypes correlates well with the CHC-binding activity of their HDAg-Ls and coincides with the severity of disease outcome. Thus, the clathrin box and the nuclear export signal at the C terminus of HDAg-L are potential new molecular targets for HDV therapy.Pathogens often take advantage of intracellular pathways involved in the trafficking of cellular macromolecules in order to carry out their life cycle, which consists of virus entry, translation, genome replication, assembly, and release. The clathrin-mediated endocytic route is a pathway commonly used for virus entry (29). Following clathrin-mediated endocytosis, incoming viruses are transported together with their receptors from the plasma membrane into early and late endosomes. Several links between clathrin adaptor complexes and viral biogenesis, including those of influenza virus (37), reovirus (13), and vesicular stomatitis virus (33), have been demonstrated.Clathrin and its adaptor proteins (APs), which constitute the major components of clathrin-coated vesicles (CCVs), are often the carriers of proteins and lipids that are transported from the trans-Golgi network (TGN) to the endosome (20, 35). Clathrin-mediated exocytosis has been found to participate in viral multiplication. The envelope protein of vesicular stomatitis virus, glycoprotein 1, recruits clathrin adaptor complex adaptor protein 1 (AP1) onto Golgi membranes and possibly leaves the TGN in CCVs for subsequent transport to endosomes (1). It is also known that interaction of AP1 with the matrix domain of human immunodeficiency virus type 1 Gag protein promotes viral release (5). In addition, Vpu inhibits the endosomal accumulation of the human immunodeficiency virus type 1 structural proteins Env and Gag, which is known to enhance viral assembly and release at the plasma membrane (39). Furthermore, large hepatitis delta antigen (HDAg-L) encoded by the hepatitis delta virus (HDV) has recently been identified as a novel clathrin adaptor-like protein (18). HDAg-L specifically interacts with clathrin heavy chain (CHC) at the TGN and inhibits clathrin-mediated protein transport. However, the role of CHC in the life cycle of HDV remains unclear.HDV is a highly pathogenic virus. The virion is coated with the envelope proteins of hepatitis B virus (HBV), the hepatitis B virus surface antigens (HBsAgs) (24). Superinfection or coinfection with HBV may result in fulminant hepatitis and progressive chronic liver cirrhosis (3, 36). The small HDAg (HDAg-S) lacks the unique C-terminal 19-amino-acid sequence of HDAg-L (6, 41, 43) and functions as a transactivator of HDV genome replication in the nucleus (23, 24). Both HDAg-S and HDAg-L possess nuclear localization signals (NLSs) spanning amino acid residues 35 to 88 and are mainly localized in the nuclei of transfected cells in the absence of HBsAg (7, 8). However, HDAg-L has been demonstrated to be a nucleocytoplasmic shuttling protein with a nuclear export signal (NES) at its unique C terminus, and this is important for HDV assembly (27). In the presence of HBsAg, HDAg-L relocalizes to the cytoplasm (29). In addition, a NES-interacting protein of HDAg-L, NESI, has been identified to be essential for the HDAg-L-mediated nuclear export of HDV RNA (42). Furthermore, the proline-rich motif within the unique 19-amino-acid extension together with isoprenylation of the CXXX motif (15) are essential for HDAg-L to form delta virus-like particles (VLPs) with HBsAg (19, 22). Taken together, these results imply that an intracellular association between HDAg-L and HBsAg in the cytoplasm is the driving force of HDV assembly. The interaction of HDAg-L with HBsAg facilitates the assembly and secretion of HDV particles. Nevertheless, the cellular proteins and pathways involved in the transport, packaging, and secretion of HDV are poorly understood.In this study, the involvement of clathrin-mediated trafficking in the propagation of HDV is biochemically characterized. Downregulation of functional CHC significantly reduced the efficiency of the CCV-mediated HDV assembly. However, CHC is not essential for the assembly of HBV subviral particles (SVPs). These results indicate that, although HBV and HDV share common surface antigens, different mechanisms are involved in their viral assembly and release. In addition, the assembly efficiency of the various HDV genotypes correlates well with the ability of HDAg-L to interact with CHC. This may reflect the fact that there is lower pathogenicity among patients infected with HDV genotype II than among those infected with genotype I.  相似文献   

2.
The large hepatitis delta antigen (HDAg-L) mediates hepatitis delta virus (HDV) assembly and inhibits HDV RNA replication. Farnesylation of the cysteine residue within the HDAg-L carboxyl terminus is required for both functions. Here, HDAg-L proteins from different HDV genotypes and genotype chimeric proteins were analyzed for their ability to incorporate into virus-like particles (VLPs). Observed differences in efficiency of VLP incorporation could be attributed to genotype-specific differences within the HDAg-L carboxyl terminus. Using a novel assay to quantify the extent of HDAg-L farnesylation, we found that genotype 3 HDAg-L was inefficiently farnesylated when expressed in the absence of the small hepatitis delta antigen (HDAg-S). However, as the intracellular ratio of HDAg-S to HDAg-L was increased, so too was the extent of HDAg-L farnesylation for all three genotypes. Single point mutations within the carboxyl terminus of HDAg-L were screened, and three mutants that severely inhibited assembly without affecting farnesylation were identified. The observed assembly defects persisted under conditions where the mutants were known to have access to the site of VLP assembly. Therefore, the corresponding residues within the wild-type protein are likely required for direct interaction with viral envelope proteins. Finally, it was observed that when HDAg-S was artificially myristoylated, it could efficiently inhibit HDV RNA replication. Hence, a general association with membranes enables HDAg to inhibit replication. In contrast, although myristoylated HDAg-S was incorporated into VLPs far more efficiently than HDAg-S or nonfarnesylated HDAg-L, it was incorporated far less efficiently than wild-type HDAg-L; thus, farnesylation was required for efficient assembly.  相似文献   

3.
Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.  相似文献   

4.
Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus, as it requires hepatitis B virus for virion production and transmission. We have previously demonstrated that sequences within the C-terminal 19-amino acid domain flanking the isoprenylation motif of the large hepatitis delta antigen (HDAg-L) are important for virion assembly. In this study, site-directed mutagenesis and immunofluorescence staining demonstrated that in the absence of hepatitis B virus surface antigen (HBsAg), the wild-type HDAg-L was localized in the nuclei of transfected COS7 cells. Nevertheless, in the presence of HBsAg, the HDAg-L became both nuclei- and cytoplasm-distributed in about half of the cells. An HDAg-L mutant with a substitution of Pro-205 to alanine could neither form HDV-like particles nor shift the subcellular localization in the presence of HBsAg. In addition, nuclear trafficking of HDAg-L in heterokaryons indicated that HDAg-L is a nucleocytoplasmic shuttling protein. A proline-rich HDAg peptide spanning amino acid residues 198 to 210, designated NES(HDAg-L), can function as a nuclear export signal (NES) in Xenopus oocytes. Pro-205 is critical for the NES function. Furthermore, assembly of HDV is insensitive to leptomycin B, indicating that the NES(HDAg-L) directs nuclear export of HDAg-L to the cytoplasm via a chromosome region maintenance 1-independent pathway.  相似文献   

5.
6.
Hsu SC  Wu JC  Sheen IJ  Syu WJ 《Journal of virology》2004,78(6):2693-2700
The nucleotide sequences of hepatitis D viruses (HDV) vary 5 to 14% among isolates of the same genotype and 23 to 34% among different genotypes. The only viral-genome-encoded antigen, hepatitis delta antigen (HDAg), has two forms that differ in size. The small HDAg (HDAg-S) trans-activates viral replication, while the large form (HDAg-L) is essential for viral assembly. Previously, it has been shown that the packaging efficiency of HDAg-L is higher for genotype I than for genotype II. In this study, the question of whether other functional properties of the HDAgs are affected by genotype differences is addressed. By coexpression of the two antigens in HuH-7 cells followed by specific antibody precipitation, it was found that HDAgs of different origins interacted without genotypic discrimination. Moreover, in the presence of hepatitis B virus surface antigen, HDAg-S was incorporated into virion-like particles through interaction with HDAg-L without genotype restriction. As to the differences in replication activation of genotype I HDV RNA, all HDAg-S clones tested had some trans-activation activity, and this activity varied greatly among isolates. As to the support of HDV genotype II replication, only clones of HDAg-S from genotype II showed trans-activation activity, and this activity also varied among isolates. In conclusion, genotype has no effect on HDAg interaction and genotype per se only partly predicts how much the HDAg-S of an HDV isolate affects the replication of a second HDV isolate.  相似文献   

7.
Jayan GC  Casey JL 《Journal of virology》2005,79(17):11187-11193
RNA editing of the hepatitis delta virus (HDV) antigenome at the amber/W site by the host RNA adenosine deaminase ADAR1 is a critical step in the HDV replication cycle. Editing is required for production of the viral protein hepatitis delta antigen long form (HDAg-L), which is necessary for viral particle production but can inhibit HDV RNA replication. The RNA secondary structural features in ADAR1 substrates are not completely defined, but base pairing in the 20-nucleotide (nt) region 3' of editing sites is thought to be important. The 25-nt region 3' of the HDV amber/W site in HDV genotype I RNA consists of a conserved secondary structure that is mostly base paired but also has asymmetric internal loops and single-base bulges. To understand the effect of this 3' region on the HDV replication cycle, mutations that either increase or decrease base pairing in this region were created and the effects of these changes on amber/W site editing, RNA replication, and virus production were studied. Increased base pairing, particularly in the region 15 to 25 nt 3' of the editing site, significantly increased editing; disruption of base pairing in this region had little effect. Increased editing resulted in a dramatic inhibition of HDV RNA synthesis, mostly due to excess HDAg-L production. Although virus production at early times was unaffected by this reduced RNA replication, at later times it was significantly reduced. Therefore, it appears that the conserved RNA secondary structure around the HDV genotype I amber/W site has been selected not for the highest editing efficiency but for optimal viral replication and secretion.  相似文献   

8.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   

9.
Assembly of hepatitis delta virus particles.   总被引:25,自引:22,他引:3       下载免费PDF全文
W S Ryu  M Bayer    J Taylor 《Journal of virology》1992,66(4):2310-2315
Hepatitis delta virus (HDV) is a subviral satellite of hepatitis B virus (HBV). Since the RNA genome of HDV can replicate in cultured cells in the absence of HBV, it has been suggested that the only helper function of HBV is to supply HBV coat proteins in the assembly process of HDV particles. To examine the factors involved in such virion assembly, we transiently cotransfected cells with various hepadnavirus constructs and cDNAs of HDV and analyzed the particles released into the medium. We report that the HDV genomic RNA and the delta antigen can be packaged by coat proteins of either HBV or the related hepadnavirus woodchuck hepatitis virus (WHV). Among the three co-carboxy-terminal coat proteins of WHV, the smallest form was sufficient to package the HDV genome; even in the absence of HDV RNA, the delta antigen could be packaged by this WHV coat protein. Also, of the two co-amino-terminal forms of the delta antigen, only the larger form was essential for packaging.  相似文献   

10.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

11.
The AP-2 adaptor complex is widely viewed as a linchpin molecule in clathrin-mediated endocytosis, simultaneously binding both clathrin and receptors. This dual interaction couples cargo capture with clathrin coat assembly, but it has now been discovered that the association with cargo is tightly regulated. Remarkably, AP-2 is not obligatory for all clathrin-mediated uptake, and several alternate adaptors appear to perform similar sorting and assembly functions at the clathrin bud site.  相似文献   

12.
S B Hwang  M M Lai 《Journal of virology》1993,67(12):7659-7662
Hepatitis delta antigen (HDAg) consists of two protein species of 195 and 214 amino acids, respectively, which are identical in sequence except that the large HDAg has additional 19 amino acids at its C terminus and is prenylated. Previous studies have shown that the large HDAg and the surface antigen of hepatitis B virus (HBsAg) together can form empty hepatitis delta virus (HDV) particles. To understand the molecular mechanism of HDV virion morphogenesis, we investigated the possible direct protein-protein interaction between HDAg and HBsAg. We constructed recombinant baculoviruses expressing the major form of HBsAg and various mutant HDAgs and used these proteins for far-Western protein binding assays. We demonstrated that HBsAg interacted specifically with the large HDAg but not with the small HDAg. Using mutant HDAgs which have defective or aberrant prenylation, we showed that this interaction required isoprenylates on the cysteine residue of the C terminus of the large HDAg. Isoprenylation alone, without the remainder of the C-terminal amino acids of the large HDAg, was insufficient to mediate interaction with HBsAg. This study demonstrates a novel role of prenylates in HDV virion assembly.  相似文献   

13.
Hepatitis delta virus (HDV) infection of individuals infected with hepatitis B virus (HBV) is associated with more severe liver damage and an increased risk of fulminant disease. HDV is a single-stranded RNA virus that encodes a single protein, the delta antigen, which is expressed in two forms, small (S-HDAg) and large (L-HDAg). Here we show that although HDV ribonucleoproteins are mainly detected in the nucleus, they are also present in the cytoplasm of cells infected with HDV or transfected with HDV cDNA. Making use of an heterokaryon assay, we demonstrate that HDV ribonucleoproteins shuttle continuously between the nucleus and the cytoplasm. In the absence of HDV RNA, both forms of the delta antigen are retained in the nucleus, whereas in the absence of the delta antigen, HDV RNA is predominantly detected in the cytoplasm. Coexpression of HDV RNA and S-HDAg (which binds to the viral RNA and contains a nuclear localization signal) results in nuclear accumulation of the viral RNA. This suggests that HDV RNA mediates export of viral particles to the cytoplasm whereas the delta antigen triggers their reimport into the nucleus.  相似文献   

14.
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins, the small delta antigen and the large delta antigen, which differ only with the latter having an additional 19 amino acids at the C-terminus. Previously, we have shown that dAg24-50, a synthetic peptide corresponding to residues 24-50 of the N-terminal leucine-repeat region of hepatitis delta antigen, binds to the viral RNA and forms an alpha-helical conformation in TFE-containing solution. However, it exhibited low alpha-helicity (less than 5%) in the absence of TFE. In order to obtain biologically active delta antigen peptides with higher structural stability in solution, an N-capping 21-residue polypeptide corresponding to residues 24-38 of hepatitis delta antigen (dAg(Cap24-38am)) was synthesized and, surprisingly, its solution structure was found to be a stable alpha-helix (64%) by circular dichroism and 1H NMR techniques. Moreover, the structure of the capping box shows the characteristic L-shaped bend perpendicular to the helix axis. This structural knowledge provides a molecular basis for understanding the role of the N-terminal leucine-repeat region of hepatitis delta antigen and has a significant potential for the development of diagnostic and therapeutic methods for HDV.  相似文献   

15.
Cheng Q  Jayan GC  Casey JL 《Journal of virology》2003,77(14):7786-7795
Hepatitis delta virus (HDV) produces two essential forms of the sole viral protein from the same open reading frame by using host RNA editing activity at the amber/W site in the antigenomic RNA. The roles of these two forms, HDAg-S and HDAg-L, are opposed. HDAg-S is required for viral RNA replication, whereas HDAg-L, which is produced as a result of editing, inhibits viral RNA replication and is required for virion packaging. Both the rate and amount of editing are important because excessive editing will inhibit viral RNA replication, whereas insufficient editing will reduce virus secretion. Here we show that for HDV genotype III, which is associated with severe HDV disease, HDAg-L strongly inhibits editing of a nonreplicating genotype III reporter RNA, while HDAg-S inhibits only when expressed at much higher levels. The different inhibitory efficiencies are due to RNA structural elements located ca. 25 bp 3' of the editing site in the double-hairpin RNA structure required for editing at the amber/W site in HDV genotype III RNA. These results are consistent with regulation of amber/W editing in HDV genotype III by a negative-feedback mechanism due to differential interactions between structural elements in the HDV genotype III RNA and the two forms of HDAg.  相似文献   

16.
The hepatitis B virus (HBV) core particle serves as a protective capsid shell for the viral genome and is highly immunogenic. Recombinant capsid-like core particles are used as effective carriers of foreign T and B cell epitopes and as delivery vehicles for oligonucleotides. The core monomer contains an arginine-rich C terminus that directs core particle attachment to cells via membrane heparan sulfate proteoglycans. Here we investigated the mechanism of recombinant core particle uptake and its intracellular fate following heparan sulfate binding. We found that the core particles are internalized in an energy-dependent manner. Core particle uptake is inhibited by chlorpromazine and by cytosol acidification known to block clathrin-mediated endocytosis but not by nystatin, which blocks lipid raft endocytosis. Particle uptake is abolished by expression of dominant negative forms of eps15 and Rab5, adaptors involved in clathrin-mediated endocytosis and early endosome transport, respectively. Endocytosed particles are transported to lysosomes where the core monomer is endoproteolytically cleaved into its distinct domains. Using protease inhibitors, cathepsin B was identified as the enzyme responsible for core monomer cleavage. Finally we found that monomer cleavage promotes particle dissociation within cells. Together, our results show that HBV capsid-like core particles are internalized through clathrin-mediated endocytosis, leading to lysosomal cleavage of the core monomer and particle dissociation.  相似文献   

17.
Hepatitis delta virus (HDV) expresses two essential proteins with distinct functions. The small hepatitis delta antigen (HDAg-S) is expressed throughout replication and is needed to promote that process. The large form (HDAg-L) is farnesylated, is expressed only at later times via RNA editing of the amber/W site, and is required for virion assembly. When HDAg-L is artificially expressed at the onset of replication, it strongly inhibits replication. However, there is controversy concerning whether HDAg-L expressed naturally at later times as a consequence of editing and replication can similarly inhibit replication. Here, by stabilizing the predicted secondary structure downstream from the amber/W site, a replication-competent HDV mutant that exhibited levels of editing higher than those of the wild type was created. This mutant expressed elevated levels of HDAg-L early during replication, and at later times, its replication aborted prematurely. No further increase in amber/W editing was observed following the cessation of replication, indicating that editing was coupled to replication. A mutation in HDAg-L and a farnesyl transferase inhibitor were both used to abolish the ability of HDAg-L to inhibit replication. Such treatments rescued the replication defect of the overediting mutant, and even higher levels of amber/W editing resulted. It was concluded that when expressed naturally during replication, HDAg-L is able to inhibit replication and thereby inhibit amber/W editing and its own synthesis. In addition, the structure adjacent to the amber/W site is suboptimal for editing, and this creates a window of time in which replication can occur in the absence of HDAg-L.  相似文献   

18.
The small hepatitis B virus surface antigen (S-HBsAg) is capable of driving the assembly and secretion of hepatitis delta virus (HDV) particles by interacting with the HDV ribonucleoprotein (RNP). Previously, a specific domain of the S-HBsAg protein carboxyl terminus, including a tryptophan residue at position 196 (W196), was proven essential for HDV maturation (S. Jenna and C. Sureau, J. Virol. 73: 3351-3358, 1999). Mutation of W196 to phenylalanine (W196F) was permissive for HBV subviral particle (SVP) secretion but deleterious to HDV virion assembly. Here, the W196F S-HBsAg deficiency was assigned to a loss of its ability for interaction with the large HDV antigen (L-HDAg), a major component of the RNP. Because the overall S-HBsAg carboxyl terminus is particularly rich in tryptophan, an amino acid frequently involved in protein-protein interactions, site-directed mutagenesis was conducted to investigate the function of the S-HBsAg Trp-rich domain in HDV assembly. Single substitutions of tryptophan between positions 163 and 201 with alanine or phenylalanine were tolerated for SVP secretion, but those affecting W196, W199, and W201 were detrimental for HDV assembly. This was proven to result from a reduced capacity of the mutants for interaction with L-HDAg. In addition, a W196S S-HBsAg mutant, which has been described in HBV strains that arose in a few cases of lamivudine-treated HBV-infected patients, was deficient for HDV assembly as a consequence of its impaired capacity for interacting with L-HDAg. Interestingly, the fact that even the most conservative substitution of phenylalanine for tryptophan at positions 196, 199, or 201 was sufficient to ablate interaction of S-HBsAg with L-HDAg suggests that W196, W199, and W201 are located at a binding interface that is central to HDV maturation.  相似文献   

19.
20.
Ribonucleoprotein complexes of hepatitis delta virus.   总被引:14,自引:13,他引:1       下载免费PDF全文
W S Ryu  H J Netter  M Bayer    J Taylor 《Journal of virology》1993,67(6):3281-3287
Human hepatitis delta virus (HDV) is a subviral satellite agent of hepatitis B virus (HBV). The envelope proteins of HDV are provided by the helper virus, HBV, but very little is known about the internal structure of HDV. The particles contain multiple copies of the delta antigen and an unusual RNA genome that is small, about 1,700 nucleotides in length, single stranded, and circular. By using UV cross-linking, equilibrium density centrifugation, and immunoprecipitation, we obtained evidence consistent with the interpretation that delta antigen and genomic RNA form a stable ribonucleoprotein (RNP) complex within the virion. Furthermore, electron-microscopic examination of the purified viral RNP revealed a roughly spherical core-like structure with a diameter of 18.7 +/- 2.5 nm. We also isolated HDV-specific RNP structures from the nuclei of cells undergoing HDV genome replication; both the genome and antigenome (a complement of the genome) of HDV were found to be in such complexes. From the equilibrium density analyses of the viral and nuclear RNPs, we were able to deduce the number of molecules of delta antigen per molecule of HDV RNA. For virions, this number was predominantly ca. 70, which was larger than for the nuclear RNPs, which were more heterogeneous, with an average value of ca. 30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号