首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many birds switch seasonally or during ontogeny between diets of varying protein content. In mammals, high-protein diets induce hypertrophy of the kidney in general and of the thick ascending limbs (TAL) in particular, along with increases in glomerular filtration rate (GFR) and urine flow. A hypothesis to explain these phenomena is that the TAL become increasingly sensitive to peptide hormones (glucagon and antidiuretic hormone [ADH]) released in response to protein feeding; the consequent enhancement of ion reabsorption dilutes urine reaching the macula densa, thereby suppressing tubulo-glomerular feedback (TGF) and causing a rise in GFR. Avian kidneys possess most of the elements involved in this mechanism, including loops of Henle with TAL, sensitivity of TAL to ADH (arginine vasotocin [AVT] in birds), and the elements of TGF. We therefore hypothesized that switching from a low-protein to a high-protein diet would induce responses in birds similar to those found in mammals. We tested this hypothesis by feeding house sparrows, Passer domesticus, isocaloric diets containing either 8% or 30% protein. Birds on high-protein food had larger renal medullae, both in mass and in TAL diameter, but no increase in whole-kidney mass. Urine flow was approximately doubled on high-protein food, but there was no change in GFR. We were not able to detect an increased sensitivity of AVT-induced adenylyl cyclase activity in TAL from high-protein animals, and responsiveness to glucagon was higher in TAL from birds eating low-protein food. We are unable to conclude that a suppression of TGF is responsible for the rise in urine flow in birds eating high-protein foods, and the mechanisms behind the medullary hypertrophy and the diuresis remain to be fully explored.  相似文献   

2.
Osmotic control for vasopressin release has been recognized for several years. Further understanding of factors affecting the sensitivity and threshold of ADH release has been advanced by the technological development of a sensitive radioimmunoassay. Evidence suggesting that ADH secretion is also mediated by nonosmotic stimuli involving a separate anatomic pathway from the hypothalamic osmoreceptor has been well documented. Experimental results suggest that the parasympathetic afferent pathways from both "high" and "low" pressure receptors constitute the most important nonosmotic pathways for ADH release. Factors such as hypoxia, altered hemodynamic states, alpha- and beta-adrenergic stimuli, nicotine, adrenal insufficiency, and advanced hypothyroidism are likely examples which activate this nonosmotic pathway. Clarification of the exact interrelationship between the osmotic and nonosmotic release of ADH needs further examination, particularly in the area of central neurotransmitters. However, available information allows for the proposal of a model of this interaction and its clinical implications which may explain many cases of "reset osmostat." Recent available data also provide support for ADH playing a role in the maintenance of blood pressure under certain circumstances. Like other potent vasoconstrictors, preliminary evidence suggests that ADH requires transcellular calcium influx for its vascular effects. Adrenal, thyroid, and edematous disorders have all been shown to be associated with abnormal water excretion. The results of recent studies indicate that these abnormal physiological states have impaired water excretion as a result of both nonosmolar factors stimulating ADH release and intrarenal factors, including diminished glomerular filtration rate or increased proximal tubule reabsorption which lead to decreased distal fluid delivery to the diluting segment of the nephron. Verney''s original studies demonstrating the osmoreceptor regulation of ADH release remain a milestone in renal physiology. In the past decade, considerable new information about nonosmotic regulation of ADH has led to further understanding of renal water regulation in health and disease; nevertheless, many of these answers have only stimulated the imagination to ponder even more questions.  相似文献   

3.
The trained condition is associated with alterations in fluid regulation. In attempt to elucidate mechanisms responsible for these differences, resting, postexercise (maximal treadmill exercise of 8-13 min duration), and recovery measurements were made in seven trained (mean peak O2 consumption was 60.5 +/- 1.6 ml.kg-1.min-1) and seven untrained (mean peak O2 consumption was 40.7 +/- 1.7 ml.kg-1.min-1) male subjects. Samples were obtained by venipuncture with subjects seated. No significant differences in resting plasma osmolality (Osm), sodium, potassium, antidiuretic hormone (ADH), aldosterone, renin activity, or atrial natriuretic factor were found between groups. Maximal exercise produced significant increases in all of the above variables. Values immediately postexercise were similar between groups except for plasma Osm and sodium, which were significantly higher in the untrained group. Despite a reduction in plasma volume of equal magnitude in both groups, trained subjects demonstrated an increase in vascular proteins and mean corpuscular volume during exercise. This increase in plasma protein may be an important initiating factor responsible for the elevated plasma volume after 1-h recovery from exercise in the trained group. Lastly, similar ADH responses despite lower Osm in trained subjects may indicate that training increases the sensitivity of ADH to osmotic stimulation.  相似文献   

4.
1. The rates of post-flight cooling in 25 saturniid moths of 8 genera ranging in weight from 81 to 2650 mg were measured and compared with cooling rates in sphingids, birds and mammals. 2. The initial and terminal cooling rates of the saturniids did not differ significantly. 3. Large saturniids have relatively smaller thoraxes than small ones. 4. In saturniids the rate of post-flight cooling is inversely related both to thoracic volume and total weight. 5. Cooling rate is less dependent on thoracic volume in saturniids than in sphingids. 6. Weight-specific conductance calculated on the basis of total weight, shows that moths are not as well insulated as birds or mammals. However, when considered on the basis of thoracic weight, the weight-specific conductance of saturniids and sphingids closely approximates that predicted by the regression of weight-specific conductance on total body weight in birds and mammals. 7. Since the insulation of saturniids and sphingids is no more effective for animals of their size than is that of birds and mammals, their high body temperatures during activity appear to depend primarily on high levels of heat production.  相似文献   

5.
6.
Effects of angiotensin II (ANGII) on regulation of sodium/glucose cotransporter (SGLT1) activity were investigated in LLC-PK(1) cells, renal proximal epithelial cell line. ANGII inhibited alpha-[14C] methyl-D-glucopyranoside (AMG) uptake into LLC-PK(1) cells in a dose-dependent manner. This inhibition was based on a decrease in maximal transport rate (Vmax) of AMG from 2.20 nmol/mg protein/15 min to 1.19 nmol/mg protein/15 min, although apparent affinity constant (Km) did not alter. In western blot analysis, protein level of SGLT1 in brush border membrane (BBM) was decreased by ANGII, although total SGLT1 was not altered. In the aspect of intracellular signal transduction, ANGII blocked the formation of cAMP. Pertussis toxin, an inactivator of Gi protein that control intracellular cAMP level, completely prevented the decrease of AMG uptake caused by ANGII. 8-Br-cAMP, a cell membrane permeable cAMP analogue, increased AMG uptake and protein level of SGLT1 in BBM. Both wortmannin and LY294002 that are phosphatidylinositol (PI) 3-kinase inhibitors, inhibited the SGLT1 activity, and also attenuated the effect of 8-Br-cAMP on SGLT1 activity. Those inhibitors prevented the 8-Br-cAMP-induced expression of SGLT1 in plasma membrane. We conclude that ANGII plays an important role in post-translational regulation in SGLT1. Inhibition of SGLT1 translocation is suggested to be caused by inactivation of protein kinase A and decrease of PI 3-kinase activity.  相似文献   

7.
Changes in blood composition, renal function, aldosterone and antidiuretic hormone (ADH) concentrations were investigated in 10 untrained male subjects when swimming (60 min at a heart rate of about 155 beats.min-1, water temperature 28 degrees C) and during the subsequent 3 h in a sitting position. Many specific effects of either exercise or immersion were abolished or attenuated; no significant changes in plasma aldosterone, [ADH], [K+], [Cl-], or of urinary volume, glomerular filtration rate, free water or osmolar clearance were observed. The urine was diluted resulting in lowered [Na+]. In blood some quantities which are only slightly influenced by immersion increased during swimming ([Na+], [Lac-], [H+], osmolality, [creatinine]). Exercise induced plasma volume loss, calculated from increasing [Hb], was small (110 ml), probably because interstitial fluid enters the vascular space during the initial phase of immersion. One might anticipate that the training effects on fluid and electrolyte metabolism and circulation are different when swimming and when performing endurance sports on land.  相似文献   

8.
Summary In conscious Pekin ducks made diuretic either by infusing hyposmotic glucose solution or isosmotic saline, osmotic and volume effects on renal water excretion were investigated. As in mammals, antidiuresis mediated by enhanced release of antidiuretic hormone was induced by increasing carotid blood osmolality while a decrease augmented diuresis, indicating cerebral osmotic control of renal water excretion in birds.In contrast to the situation in mammals, a sensitive diuretic response to isosmotic volume expansion, corresponding to 1% of the extracellular volume, can be demonstrated, with intracarotid and intravenous application of the isosmotic saline infusion having identical effects.Volume loading with isosmotic saline produced a greater diuretic response than loading with the same amount of autologous blood, thereby indicating a major contribution of volume changes in the interstitial compartment to the control of renal water excretion. This corresponds to the importance of the interstitial fluid compartment for the control of salt gland activity in this species.Abbreviations AVP arginine vasopressin - ECF extracellular fluid - i.c., i.v. intracarotid, intravenous - ECFV ECF volume  相似文献   

9.
10.
Variation in the types and spectral characteristics of visual pigments is a common mechanism for the adaptation of the vertebrate visual system to prevailing light conditions. The extent of this diversity in mammals and birds is discussed in detail in this review, alongside an in-depth consideration of the molecular changes involved. In mammals, a nocturnal stage in early evolution is thought to underlie the reduction in the number of classes of cone visual pigment genes from four to only two, with the secondary loss of one of these genes in many monochromatic nocturnal and marine species. The trichromacy seen in many primates arises from either a polymorphism or duplication of one of these genes. In contrast, birds have retained the four ancestral cone visual pigment genes, with a generally conserved expression in either single or double cone classes. The loss of sensitivity to ultraviolet (UV) irradiation is a feature of both mammalian and avian visual evolution, with UV sensitivity retained among mammals by only a subset of rodents and marsupials. Where it is found in birds, it is not ancestral but newly acquired.  相似文献   

11.
Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.  相似文献   

12.
13.
Flying animals may experience a selective constraint on gut volume because the energetic cost of flight increases and maneuverability decreases with greater digesta load. The small intestine is the primary site of absorption of most nutrients (e.g., carbohydrates, proteins, fat) in both birds and mammals. Therefore, we used a phylogenetically informed approach to compare small intestine morphometric measurements of birds with those of nonflying mammals and to test for effects of diet within each clade. We also compared the fit of nonphylogenetic and phylogenetic models to test for phylogenetic signal after accounting for effects of body mass, clade, and/or diet. We provide a new MATLAB program (Regressionv2.m) that facilitates a flexible model-fitting approach in comparative studies. As compared with nonflying mammals, birds had 51% less nominal small intestine surface area (area of a smooth bore tube) and 32% less volume. For animals <365 g in body mass, birds also had significantly shorter small intestines (20%-33% shorter, depending on body mass). Diet was also a significant factor explaining variation in small intestine nominal surface area of both birds and nonflying mammals, small intestine mass of mammals, and small intestine volume of both birds and nonflying mammals. On the basis of the phylogenetic trees used in our analyses, small intestine length and nominal surface area exhibited statistically significant phylogenetic signal in birds but not in mammals. Thus, for birds, related species tended to be similar in small intestine length and nominal surface area, even after accounting for relations with body mass and diet. A reduced small intestine in birds may decrease the capacity for breakdown and active absorption of nutrients. Birds do not seem to compensate for reduced digestive and absorptive capacity via a longer gut retention time of food, but we found some evidence that birds have an increased mucosal surface area via a greater villus area, although not enough to compensate for reduced nominal surface area. We predict that without increased rate of enzyme hydrolysis and/or mediated transport and without increased passive absorption of water-soluble nutrients, birds may operate with a reduced digestive capacity, compared with that of nonflying mammals, to meet an increase in metabolic needs (i.e., a reduced spare capacity).  相似文献   

14.
Histological changes induced in the HNS of the spotted owlet, Athene brama Temminck, by injection of 1 ml 5 or 10% formalin are described. No difference could be detected in the response of the HNS to 5 or 10% formalin administration. In the HNS of birds killed within 5 min of formalin administration, there was only partial depletion of NSM from the neurons, the tract and the NL; the quantity of NSM in the AME remained more or less unchanged. In animals killed 10-90 min after formalin injection, the depletion of NSM from the neurons, the tract and the NL was more complete. The neurons of the preoptic division of the SON exhibited the maximum response; these neurons were also moderately hypertrophied. The NL also was hypertrophied in some animals; the NSM in the AME registered only a partial loss. The interval between formalin administration and killing did not influence the degree of changes in the HNS. The depletion of NSM was no greater at 90 min following formalin injection than at 10 min. Since it is well established that formalin stress causes augmented secretion of ADH and that there is a close functional relationship existing between ADH and NSM, the depletion of NSM noticed in the HNS of the spotted owlet following formalin administration is interpreted as indicating augmented secretion of ADH. Hence it seems that the response of the HNS of birds to formalin stress are comparable to those of the HNS of mammals. The results thus provide histological evidence in favour of the concept that stressful stimuli cause increased secretion of ADH.  相似文献   

15.
Food habits and the basal rate of metabolism in birds   总被引:7,自引:0,他引:7  
Brian K. McNab 《Oecologia》1988,77(3):343-349
Summary The correlation of basal rate of metabolism with various factors is examined in birds. Chief among these is body mass. As in mammals, much of the remaining variation in basal rate among birds is associated with food habits. Birds other than passerines that feed on grass, nectar, flying insects, or vertebrates generally have basal rates that are similar to mammals of the same mass and food habits. In contrast, most invertebrate-eating birds that weigh over 100 g have higher basal rates than equally-sized, invertebrate-eating mammals. The high basal rates of small passerines equal those of small mammals that do not enter torpor and represent the minimal cost of continuous endothermy. Large passerines and small procellariiforms, charadriiforms, and psittaciforms generally have higher basal rates than mammals with the same mass and food habits. The high basal rates of passerines (in combination with altricial habits) may have significance in permitting high post-natal growth rates and the exploitation of seasonally abundant resources. These interrelations may contribute to the predominance of passerines in temperate land environments.  相似文献   

16.
We examined cell size correlations between tissues, and cell size to body mass relationships in passerine birds, amphibians and mammals. The size correlated highly between all cell types in birds and amphibians; mammalian tissues clustered by size correlation in three tissue groups. Erythrocyte size correlated well with the volume of other cell types in birds and amphibians, but poorly in mammals. In birds, body mass correlated positively with the size of all cell types including erythrocytes, and in mammals only with the sizes of some cell types. Size of mammalian erythrocytes correlated with body mass only within the most taxonomically uniform group of species (rodents and lagomorphs). Cell volume increased with body mass of birds and mammals to less than 0.3 power, indicating that body size evolved mostly by changes in cell number. Our evidence suggests that epigenetic mechanisms determining cell size relationships in tissues are conservative in birds and amphibians, but less stringent in mammals. The patterns of cell size to body mass relationships we obtained challenge some key assumptions of fractal and cellular models used by allometric theory to explain mass-scaling of metabolism. We suggest that the assumptions in both models are not universal, and that such models need reformulation.  相似文献   

17.
Several studies have indicated that in birds breathing frequency ( f , breaths min−1) scales to the −1/3 of body weight ( W , kg); this is different from the −1/4 of mammals. We wondered if this discrepancy was due to the peculiar scaling pattern of aquatic birds, as is the case of aquatic mammals. In fact, we had noted previously that the allometric scaling of f differs considerably between aquatic and terrestrial mammals, respectively, W −0.42 and W −0.25. Measurements of f were obtained in 48 aquatic birds of 22 species and in 35 terrestrial birds of 27 species, during resting conditions on land. Additional data from 11 aquatic and 14 terrestrial species, different from the ones measured, were obtained from the literature. The allometric curve of all species combined (terrestrial and aquatic, n =74) was f =13.3 W −0.36, similar to what is reported in previous studies. However, the allometric curve of the aquatic species ( n =33, f =14.5 W −0.56) differed greatly ( P <0.001) from that of the terrestrial species ( n =41, f =13.4 W −0.26). On average, f of aquatic birds of the 3–5 kg range was 63%, and that of birds of larger size was 57%, of the values of terrestrial birds of similar W . We conclude that, as in mammals, also in terrestrial birds f scales to the −1/4 exponent of W . The similarity of the scaling patterns of f between aquatic birds and mammals suggests a common breathing adaptation to life in the aquatic environment irrespective of phylogenetic relations.  相似文献   

18.
Several neuroactive peptides have been implicated in thirst and sodium appetite in different species; three peptides are considered here. The best established of these is the octapeptide angiotensin II, which when administered systemically or intracranially causes completely normal drinking behaviour in all vertebrates tested, including many mammals, four or five birds, one reptile and one bony fish. In the rat, in which the original experiments were carried out, injection of a few femtomoles of angiotensin II caused a brisk drinking response within a minute or so of injection at a time of day when the animal would usually be resting. The response is usually completed within 10 min and after the larger doses the amounts of water taken may approach what the animal would normally drink in the course of 24 h. Another response to intracranial angiotensin, seen so far only in the rat, is an increase in sodium appetite. This is slower in onset than thirst, lasts for many hours and the response tends to become greater with repeated injections of hormone. Naturally occurring increases in sodium appetite may be caused by angiotensin generated by the action of cerebral isorenin. A second neuroactive peptide that affects thirst is the undecapeptide eledoisin, which is found in the salivary glands of certain Mediterranean cephalopods. Eledoisin and, to a lesser extent, substance P, with which it is related, are potent intracranial dipsogens in the pigeon, producing behaviour that is indistinguishable from that produced by angiotensin. However, in contrast to the stimulatory action of angiotensin on drinking behaviour in all other vertebrate species tested, these substances specifically depress drinking in the rat. A third peptide that has been implicated in thirst is antidiuretic hormone (ADH). This hormone has a profound but indirect effect on water intake in diabetes insipidus. In the dog, however, ADH in physiological amounts may influence thirst mechanisms by direct action on the central nervous system. In this species, but not in the rat, ADH lowers the threshold of thirst in response to osmotic stimulation and also to infusion of angiotensin. Of these three peptides, and others not mentioned here, angiotensin II has the best claim to be regarded as a neuroactive peptide. It alone is always dipsogenic when injected into the brain and it also stimulates sodium appetite. Whether the effects of angiotensin, on thirst and sodium appetite should be regarded as manifestations of the activity of a classical endocrine system, of a paracrine system, of a neurotransmitter system, or of all of these, cannot be decided at present. But these actions of angiotensin, when considered with its other actions on the distribution and conservation of body fluid, show that the hormone is intimately concerned in extracellular fluid volume control.  相似文献   

19.
Recent hypotheses that variation in brain size among birds and mammals result from differences in metabolic allocation during ontogeny are tested.
Indices of embryonic and post-embryonic brain growth are defined. Precocial birds and mammals have high embryonic brain growth indices which are compensated for by low post-embryonic indices (with the exception of Homo supiens ). In contrast, altricial birds and mammals have low embryonic and high post-embryonic indices. Altricial birds have relatively small brains at hatching and develop relatively large brains as adults, but among mammals there is no equivalent correlation between variation in adult relative brain sizes and state of neonatal development.
Compensatory brain development in both birds and mammals is associated with compensatory parental metabolic allocation. In comparison with altricial development, precocial development is characterized by higher levels of brain growth and parental metabolic allocation prior to hatching or birth and lower levels subsequently. Differences between degrees of postnatal investment by the parents in the young of precocial birds versus precocial mammals may result in the different patterns of adult brain size associated with precociality versus altriciality in the two groups.
The allometric exponent scaling brain on body size differs among taxonomic levels in birds. The exponent is higher for some parts of the brain than others, irrespective of taxonomic level. Unlike mammals, the exponents for birds do not show a general increase with taxonomic level. These pattcrns call into question recent interpretations of the allometric exponent in birds. and the reason for changes in exponent with taxonomic level.  相似文献   

20.
The proper formation, growth and maintenance of many bones depends on the mechanical loads generated by gravity and muscles. Mechanical loading by muscle forces does not only affect bone growth and maintenance in adult and juvenile vertebrates, but also affects larval and embryonic bone development. We have reviewed the current understanding of mechanotransduction in birds and mammals and compared it to teleosts. The major mechanosensing cells in the adult mammalian and avian skeleton are osteocytes. They are interconnected via cell processes and are contained within a canalicular network. Basal teleosts have osteocytes but their connectivity is questionable and the presence of a functional canalicular network is unlikely. Advanced teleosts have acellular bone and therefore lack osteocytes. Yet the skeleton of teleosts does show adaptive responses to changes in mechanical load. In these animals it is likely that osteoblasts, bone surface cells and chondrocytes act as mechanosensors. The factors expressed by osteocytes upon mechanical stimulation have been extensively investigated in vitro and in vivo in adult mammals and birds. Less is, however, known about the mechanotransduction pathway during embryonic bone development. The zebrafish presents new opportunities to analyze the mechanotransduction pathway during early (larval) bone formation due to the ex utero development and genetic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号