首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Properties of different Ca2+ pools in permeabilized rat thymocytes   总被引:1,自引:0,他引:1  
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway.  相似文献   

2.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in dissociated bovine parathyroid cells using the fluorescent indicator quin-2 or fura-2. Small increases in the concentration of extracellular Ca2+ produced relatively slow, monophasic increases in [Ca2+]i in quin-2-loaded cells, but rapid and transient increases followed by lower, yet sustained (steady-state), [Ca2+]i increases in fura-2-loaded cells. The different patterns of change in [Ca2+]i reported by quin-2 and fura-2 appear to result from the greater intracellular Ca2+-buffering capacity present within quin-2-loaded cells, which tends to damp rapid and transient changes in [Ca2+]i. In fura-2-loaded parathyroid cells, other divalent cations (Mg2+, Sr2+, Ba2+) also evoked transient increases in [Ca2+]i, and their competitive interactions suggest that they all affect Ca2+ transients by acting on a common site. In contrast, divalent cations failed to cause increases in steady-state levels of cytosolic Ca2+. Low concentrations of La3+ (0.5-10 microM) depressed steady-state levels of cytosolic Ca2+ elicited by extracellular Ca2+ but were without effect on transient increases in [Ca2+]i elicited by extracellular Ca2+, Mg2+ or Sr2+, suggesting that increases in the steady-state [Ca2+]i arise from the influx of extracellular Ca2+. Mg2+- and Sr2+-induced cytosolic Ca2+ transients persisted in the absence of extracellular Ca2+ but were abolished by pretreatment with ionomycin. These results show that cytosolic Ca2+ transients arise from the mobilization of cellular Ca2+ from a nonmitochondrial pool. Extracellular divalent cations thus appear to act at some site on the surface of the cell, and this site can be considered a "Ca2+ receptor" which enables the parathyroid cell to detect small changes in the concentration of extracellular Ca2+.  相似文献   

3.
Changes in the concentration of cytosolic free calcium were recorded microfluorometrically in rat vascular smooth muscle cells in primary culture and loaded with quin-2. The effects of caffeine and high extracellular K+ on the release of calcium from the intracellular storage sites were determined. In the absence of extracellular calcium, both the depolarization of plasma membrane with excess extracellular K+ and the application of caffeine induced a transient and dose-dependent elevation of the cytosolic free calcium concentration, with durations of 4 and 2 min, respectively. Transient elevations of calcium repeatedly appeared in response to both repetitive depolarization (100 mM K+) and caffeine (10 mM) applications with progressive reductions in peak levels. In either case, the fifth or later treatments induced little or no rise in levels of the cytosolic calcium. The amount of released calcium induced by high K+ depolarization after (n-1) time applications (1 less than or equal to n less than or equal to 5) of caffeine was equal to that induced by the n-th application of caffeine. The amount of released calcium induced by caffeine after (n-1) time exposures (1 less than or equal to n less than or equal to 5) to K+ depolarization was equal to that observed during the n-th exposure to K+ depolarization. These results indicate that caffeine- and depolarization-sensitive intracellular calcium storage sites may be identical and that caffeine and K+, in optimal concentrations, will release an equal amount of calcium from the same storage site in cultured arterial smooth muscle cells, irrespective of the amount of stored calcium.  相似文献   

4.
The origin and amount of mobilized Ca2+ in chemotactic peptide-stimulated guinea pig neutrophils were examined using biochemical techniques. The total amount of releasable Ca2+ by 20 microM A23187 from the unstimulated intact cells was 0.91 nmol/4 X 10(6) cells, as assessed by change in absorbance of the antipyrylazo III-Ca2+ complex. Two types of internal vesicular Ca2+ pool, mitochondrial and non-mitochondrial pool were identified in the saponin-permeabilized cells. The total amount of releasable Ca2+ was comparable to that accumulated by the non-mitochondrial pool at (1-2) X 10(-7) M of a free Ca2+ concentration. The mitochondrial uncoupler, capable of releasing Ca2+ from the mitochondrial pool, neither modified the basal cytosolic free Ca2+ in quin 2-loaded cells nor caused a Ca2+ efflux from the intact cells. These results suggest that the releasable Ca2+ may be located in the non-mitochondrial pool of unstimulated intact cells, and the mitochondrial pool contains little releasable Ca2+. The addition of fMet-Leu-Phe increased the cytosolic free Ca2+ by two processes: Ca2+ mobilization from internal stores and Ca2+ influx through the surface membrane. The Ca2+ mobilized and effluxed from the intact cells by stimulation with the maximal doses of fMet-Leu-Phe was estimated to be 0.27 nmol/4 X 10(6) cells. Almost equal amounts were released by the maximal doses of inositol 1,4,5-trisphosphate from the non-mitochondrial pool of saponin-treated cells that had accumulated Ca2+ at a free Ca2+ concentration of 1.4 X 10(-7) M. The mechanism related to the Ca2+ influx by fMet-Leu-Phe stimulation was also examined. The addition of nifedipine or phosphatidic acid did not affect the change in the cytosolic free Ca2+ induced by fMet-Leu-Phe, thereby suggesting that the receptor-mediated Ca2+ channel may be involved in the Ca2+ influx.  相似文献   

5.
The recently available compound quin-2, which acts as a high affinity fluorescent indicator for calcium in the cytosol, was used to examine the role of calcium mobilization in the alveolar macrophage during the stimulation of 0-2 production by the tripeptide N-formyl norleucyl leucyl phenylalanine (FNLLP). After preloading with quin-2, the production of 0-2 was measured in conjunction with the transfer of 45Ca+2 and changes in quin-2 fluorescence upon stimulation with FNLLP. When cells were maintained in low (10 microM) extracellular calcium medium the presence of 1.5 mM quin-2 in the cytosolic space partially inhibited the rate of 0-2 production upon stimulation by FNLLP. Addition of 1 mM Ca+2 to the medium prior to stimulation rapidly restored the cell's capability to produce 0-2 upon stimulation at rates equal to control and extended the duration of stimulated 0-2 production as well. Quin-2 fluorescence measurements indicated an increase in cytosolic Ca+2 upon stimulation with FNLLP. This increase was lowest under conditions in which 0-2 production was inhibited. The addition of 1 mM Ca+2 to the medium caused by itself a rapid but transient increase in cytosolic Ca+2 as measured with quin-2 without stimulating 0-2 production. This intracellularly redistributed calcium was determined to be the source of the greater increase in cytosolic calcium during stimulation in the presence of high extracellular calcium. Measurements of 45Ca+2 transfer demonstrated a buffering of cytosolic Ca+2 changes by quin-2, which in low calcium medium could deplete calcium stores. It is suggested that this effect, prior to stimulation, was responsible for the mitigated 0-2 response for those cells maintained in low calcium medium, wherein calcium stores could not be replenished. These results suggested that the cell's mechanism for regulating cytosolic and bound calcium concentrations may also play an integral role in its normal mechanism for stimulated 0-2 production. They further support the postulate that the commonly observed rise in the concentration of calcium in the cytosol upon formyl peptide stimulation is a concomitant but nonregulatory event only.  相似文献   

6.
When guinea pig peritoneal neutrophils were suspended in the isotonic medium of potassium, rubidium, and cesium ions at 37 degrees C, the cells released superoxide, while low activity was observed in the isotonic medium of sodium and lithium ions. The activity induced in the potassium medium was enhanced by potassium-ionophores, valinomycin, and gramicidin, and decreased by a potassium channel blocker, 4-aminopyridine. The superoxide-releasing activity was not affected by the presence or absence of extracellular calcium but was inhibited by an intracellular calcium antagonist-8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate(TMB-8) with the half-inhibition concentration of 50 microM. The release of granular enzymes, lysozyme and beta-glucuronidase, was also induced in the isotonic potassium medium in the absence of extracellular calcium and inhibited by TMB-8. A remarkable elevation of the intracellular free calcium concentration in neutrophils, which was monitored by quin-2 fluorescence, was found when the cells were added to the potassium medium without calcium. The elevation was inhibited by the addition of TMB-8. These observations suggest that calcium mobilization from intracellular storage sites, not an influx of calcium from the extracellular medium, causes the release of superoxide and the granular enzymes in isotonic potassium medium.  相似文献   

7.
Cultured Friend cells can be induced by dimethyl sulfoxide (Me2SO) and several other agents to mature along the erythroid pathway. Evidence has been presented that an increase in Ca2+ influx is an early and necessary prelude to the commitment to maturation by these cells (Levenson, R., Housman, D., and Cantley, L. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5948-5952). The simplest hypothesis supporting all the available data is that Me2SO and other inducers elevate the cytosolic Ca2+ concentration. We have now measured cytosolic Ca2+ using the fluorescent indicator quin-2, and find, contrary to expectation, a small decrease upon treatment of cells with Me2SO. Cytosolic Ca2+ was increased by raising the Ca2+ in the medium, but was not dramatically altered by addition of ouabain or monensin or by incubation in Na+-free medium. Measurement of total cell Ca2+ by a triple-labeling technique using 3H2O and 125I-albumin to determine cell water and extracellular space, respectively, revealed no significant change upon treatment with Me2SO for up to 40 h. A decrease in the initial rate of 45Ca2+ influx was observed in Me2SO-treated cells, when measured at 4 degrees C. These data do not support the hypothesis that an increase in cell Ca2+ is necessary for the induction of Friend cell differentiation or that Na+/Ca2+ exchange is a significant regulator of cytosolic Ca2+ in Friend cells.  相似文献   

8.
Bay K 8644, a novel dihydropyridine, stimulates calcitonin secretion in a dose-dependent manner from a rat medullary thyroid carcinoma cell line, rMTC 6-23, and causes an increase in cytosolic free calcium concentration, as measured by quin-2. These effects are competitively inhibited by nifedipine, and completely abolished in the absence of extracellular calcium. These data suggest that calcium influx via voltage-dependent calcium channels plays a crucial role in the regulation of cytosolic free calcium concentration and calcitonin secretion.  相似文献   

9.
Calcium and protein kinase C (Ca2+/phospholipid-dependent enzyme) have been proposed to act as signals in triggering superoxide anion (O2-) generation by neutrophils. We have probed the adequacy and necessity of calcium and diacylglycerol (DG), activators of protein kinase C, in eliciting O2- generation and degranulation. Activation of neutrophils by the ligand 10(-7) M fMet-Leu-Phe triggered elevation of cytosolic calcium (fura-2) and a rapid, biphasic increase in labeled DG in [14C]glycerol and [3H]arachidonate prelabeled cells. Buffering of the fMet-Leu-Phe-induced elevation of cytosolic calcium with MAPTAM (a cell permeant EGTA analogue) inhibited O2- generation by 90% and degranulation by 50%, concordant with a role of calcium in signaling. However, buffering the increase in calcium also decreased DG. Since phosphatidylinositol 4,5-bisphosphate breakdown in response to fMet-Leu-Phe was not inhibited and phosphatidic acid levels were enhanced in MAPTAM pretreated cells, the removal of calcium may enhance further DG metabolism. Thus, a requirement for calcium could not be differentiated from a requirement for DG, and the profound inhibition of O2- generation in the presence of MAPTAM may reflect removal of DG. Four stimuli, fMet-Leu-Phe, 10(-7) M leukotriene B4, 100 micrograms/ml concanavalin A, and 200 nM ionomycin elevated cytosolic calcium and triggered release of specific granules, but only fMet-Leu-Phe and concanavalin A triggered substantial O2- generation. Nevertheless, all four stimuli significantly increased labeled DG. Therefore, elevated DG and elevated calcium may be necessary but do not appear adequate to elicit O2- generation. Only fMet-Leu-Phe and concanavalin A triggered generation of phosphatidic acid (PA) together with DG. Correlation of O2- generation with PA may reflect a requirement for PA per se or for a specific pool of DG that can be further metabolized to PA.  相似文献   

10.
Ejaculated rabbit spermatozoa were loaded with the calcium-selective fluorescent indicator quin-2. Measurements of trypan blue exclusion indicated that cell viability was not affected by quin-2 loading. The concentration of intracellular free calcium of quin-2 loaded sperm was calculated to be 144 +/- 14 nM. Spermatozoa capacitated in vitro either before or following quin-2 loading had intracellular free calcium levels similar to that of non-capacitated sperm. These studies indicate that the concentration of intracellular free calcium of ejaculated rabbit spermatozoa does not change as a result of in vitro capacitation.  相似文献   

11.
Cytoplasmic calcium oscillations: a two pool model   总被引:6,自引:0,他引:6  
M J Berridge 《Cell calcium》1991,12(2-3):63-72
Cytosolic calcium oscillations induced by a wide range of agonists, particularly those which stimulate phosphoinositide metabolism, are the result of a periodic release of stored calcium. The formation of inositol 1,4,5 trisphosphate (Ins(1,4,5)P3) seems to play an important role because it can initiate this periodic behaviour when injected or perfused into a variety of cells. A two pool model has been developed to explain how Ins(1,4, 5)P3 sets up these calcium oscillations. It is proposed that Ins(1,4,5)P3 acts through its specific receptor to create a constant influx of primer calcium (Ca2+p) made up of calcium released from the Ins(1,4,5)P3-sensitive pool (ISCS) together with an influx of external calcium. This Ca2+p fails to significantly elevate cytosolic calcium because it is rapidly sequestered by the Ins(1,4,5)P3-insensitive (IICS) stores of calcium distributed throughout the cytosol. Once the latter have filled, they are triggered to release their stored calcium through a process of calcium-induced calcium release to give a typical calcium spike (Ca2+s). In many cells, each Ca2+s begins at a discrete initiation site from which it then spreads through the cell as a wave. The two pool model can account for such waves if it is assumed that calcium released from one IICS diffused across to excite its neighbours thereby setting up a self-propagating wave based on calcium-induced calcium release.  相似文献   

12.
A specific, high-affinity binding site for leukotriene C4 was identified in human erythrocyte particulate fraction and in vesicle preparation. The binding was saturable, reversible and specific. Vesicle preparations showed that binding sites were localized on the outside of the plasma membrane. The dissociation constant and site density were found to be Kd = 15.9 +/- 3.2 nmol X 1(-1) and N = 152 +/- 35 sites per cell, respectively, as calculated from Scatchard analysis. The effect of leukotriene C4 did not modify the calcium influx and did not inhibit the ATPase-dependent calcium efflux. In this paper, the physiological significance of these sites is discussed.  相似文献   

13.
Summary Jurkat and MOLT-4 cultured T lymphoblasts were loaded with low concentrations (30–50 m) of indo-1 and with high concentrations (3.5–4.5mm) of quin-2, respectively, in order to follow the activation of calcium transport pathways after stimulation of the cells by a monoclonal antibody against the T cell antigen receptor (aCD3), or after the addition of thapsigargin, a presumed inhibitor of endoplasmic reticulum calcium pump. In the indo-1 loaded cells the dynamics of the intracellular calcium release and the calcium influx could be studied, while in the quin-2 overloaded cells the changes in cytoplasmic free calcium concentration ([Ca2+] i ) were strongly buffered and the rate of calcium influx could be quantitatively determined. We found that in Jurkat lymphoblasts, in the absence of external calcium, both aCD3 and thapsigargin induced a rapid calcium release from internal stores, while upon the readdition of external calcium an increased rate of calcium influx could be observed in both cases, aCD3 and thapsigargin released calcium from the same intracellular pools. The calcium influx induced by either agent was of similar magnitude and had a nonadditive character if the two agents were applied simultaneously. As demonstrated in quin-2 overloaded cells, a significant initial rise in [Ca2+] i or a pronounced depletion of internal calcium pools was not required to obtain a rapid calcium influx. The activation of protein kinase C by phorbol ester abolished the internal calcium release and the calcium influx induced by aCD3, while having only a small effect on these phenomena when evoked by thapsigargin. Membrane depolarization by gramicidin inhibited the rapid calcium influx in both aCD3- and thapsigargin-treated cells, although it did not affect the internal calcium release produced by either agent. In MOLT-4 cells, which have no functioning antigen receptors, aCD3 was ineffective in inducing a calcium signal, while thapsigargin produced similar internal calcium release and external calcium influx to those observed in Jurkat cells.  相似文献   

14.
To trace the route of Ca2+ entry and the role of the cytosolic Ca2+ pool in reloading of the internal stores of pancreatic acinar cells, Mn2+ influx into Fura 2-loaded cells and the effect of 1,2-bis(2-aminophenoxyethane-N,N,N',N'-tetraacetic acid (BAPTA) on Ca2+ storage in intracellular stores and reloading were examined. Treatment of acini suspended in Ca2(+)-free medium with carbachol (cell stimulation) or carbachol and atropine (reloading period) resulted in 2-fold increase in the rate of Mn2+ influx. Increasing Ca2+ permeability of the plasma membrane by elevation of extracellular pH from 7.4 to 8.2 further increased the rate of Mn2+ influx observed during cell stimulation and the reloading period. Loading the acini with BAPTA by incubation with 50 microM of the acetomethoxy form of BAPTA (BAPTA/AM) was followed by a transient reduction in free cytosolic Ca2+ concentration ((Ca2+]i). To compensate for the increased Ca2+ buffering capacity in the cytosol the acini incorporated Ca2+ from the external medium. Although BAPTA prevented changes in free cytosolic Ca2+ concentration during carbachol and atropine treatment, it had no apparent effect on Ca2+ content of the internal stores or the ability of agonists to release Ca2+ from these stores. Loading the cytosol with BAPTA considerably reduced the rate of Ca2+ reloading. These observations are not compatible with direct communication between the medium and the inositol 1,4,5-trisphosphate releasable pool and provide direct evidence for Ca2+ entry into the cytosol prior to its uptake into the intracellular pool, both during cell stimulation and the Ca2+ reloading.  相似文献   

15.
A secondary ion mass spectrometry (SIMS) based isotopic imaging technique was used for studies of i/ total calcium stored in cancerous and normal cell lines and ii/ intracellular chemical composition (total K, Na, and Ca) in relation to DNA staining patterns in taxol-treated breast cancer cells. A Cameca IMS-3f ion microscope with 0.5 microm spatial resolution was used. Observations were made on frozen freeze-dried cells. In MCF-10A non-tumorigenic breast epithelial cells, the nucleus contained 0.6 +/- 0.10 mM and the cytoplasm 1.1 +/- 0.30 mM total calcium per unit volume (mean +/- S.D.). MCF-7 tumorigenic breast epithelial cells revealed an abnormal total calcium distribution. Their nuclei and cytoplasm were not significantly different in stored calcium concentrations (0.5 +/- 0.08 mM total calcium in the nucleus and 0.6 +/- 0.07 mM in the cytoplasm). Furthermore, in MCF-7 cells the cytoplasmic total calcium is significantly less than in MCF-10A cells. Both cell lines contained approximately 150 mM intracellular potassium and 13 mM sodium. As 80% of the cytoplasmic total calcium pool in MCF-10A cells could be released with thapsigargin, it is plausible that the calcium storage capacity of the endoplasmic reticulum in tumorigenic MCF-7 cells is compromised. Correlative SIMS and confocal laser scanning microscopy (CLSM) revealed an increase in intracellular sodium and a redistribution of calcium in taxol-arrested M-phase cells prior to any noticeable DNA fragmentation. This novel correlative approach opens new avenues of research for understanding intracellular ionic composition in relation to therapeutic cytotoxicity. Other valuable features of SIMS for cancer research shown in this study include subcellular imaging of calcium influx using 44Ca, 127I from iododeoxyuridine for S-phase recognition, and 19F from fluorinated deoxyglucose.  相似文献   

16.
The effects of cholesterol-perturbing agents on the mobilization of calcium induced upon the stimulation of human neutrophils by chemotactic factors were tested. Methyl-beta-cyclodextrin and filipin did not alter the initial peak of calcium mobilization but shortened the duration of the calcium spike that followed the addition of fMet-Leu-Phe. These agents also inhibited the influx of Mn(2+) induced by fMet-Leu-Phe or thapsigargin. Methyl-beta-cyclodextrin and filipin completely abrogated the mobilization of calcium induced by 10(-10) m platelet-activating factor, which at this concentration depends to a major extent on an influx of calcium as well as the influx of calcium induced by 10(-7) m platelet-activating factor. On the other hand, methyl-beta-cyclodextrin and filipin enhanced the mobilization of calcium induced by ligation of FcgammaRIIA, an agonist that did not induce a detectable influx of calcium. Finally, methyl-beta-cyclodextrin and filipin enhanced the stimulation of the profile of tyrosine phosphorylation, the activity of phospholipase D (PLD), and the production of superoxide anions induced by fMet-Leu-Phe. These results suggest that the calcium channels utilized by chemotactic factors in human neutrophils are either located in cholesterol-rich regions of the plasma membrane, or that the mechanisms that lead to their opening depend on the integrity of these microdomains.  相似文献   

17.
Loading isolated rat hepatocytes with high concentrations of the fluorescent Ca2+-chelator quin-2 in the absence of extracellular Ca2+ decreases by about 3-fold the cytosolic Ca2+ concentration ([Ca2+]i). In these low [Ca2+]i cells, the initial 45Ca2+ uptake rate, assumed to represent the Ca2+ influx, is stimulated to a level close to that promoted by maximal doses of vasopressin and angiotensin II in control cells. The subsequent addition of Ca2+ to the quin-2-loaded hepatocytes results in a rapid increase in [Ca2+]i and a return of Ca2+ influx towards the basal level usually observed in nonloaded cells. This indicates that the Ca2+ influx is dependent on [Ca2+]i but not on the quin-2 load itself. In the low [Ca2+]i cells, both the apparent Km and the apparent Vmax of the Ca2+ influx are increased as compared to the controls, indicating that the properties of the channels activated by lowering [Ca2+]i are apparently identical to those initiated by the hormones (Mauger, J.-P., Poggioli, J., Guesdon, F., and Claret, M. (1984) Biochem. J. 221, 121-127). It is proposed that in the isolated rat hepatocytes there is an inverse relationship between the Ca2+ influx and [Ca2+]i. Under resting conditions, [Ca2+]i might be high enough to partially inhibit the Ca2+ influx via a Ca2+ binding to an inhibitory site presumably located at the inner membrane surface. The role of the site in the hormonal action is discussed.  相似文献   

18.
Using the microfluorometry of an intracellularly trapped calcium indicator dye, quin2, characteristics of intracellular Ca2+ store sites sensitive to histamine, norepinephrine, or caffeine were investigated using rat vascular smooth muscle cells in primary culture at 25 degrees C. With similar time courses, both histamine- and the norepinephrine-sensitive Ca2+ store sites were readily depleted in Ca2(+)-free medium and almost completely replenished by loading the cells with 1.0 mM Ca2+ solution for 3 min, while the caffeine-sensitive Ca2+ store site was little affected. In the absence of extracellular Ca2+, transient elevations of cytosolic Ca2+ repeatedly appeared in response to repetitive applications of histamine, norepinephrine, or caffeine, with progressive reductions in peak levels. Histamine released Ca2+ from the norepinephrine-sensitive store site and norepinephrine released Ca2+ from the histamine-sensitive one. On the other hand, caffeine had little effect on the histamine- and/or the norepinephrine-sensitive Ca2+ store site in Ca2(+)-free medium, and vice versa. We propose that the location and mechanisms of release of Ca2+ of the histamine-sensitive Ca2+ store site are identical with events at the norepinephrine-sensitive site, and differ from the caffeine-sensitive one, in vascular smooth muscle cells in primary culture.  相似文献   

19.
Calcium dynamics in human neutrophils have been studied using Quin 2 fluorescence as a measure of free cytoplasmic calcium and chlortetracycline fluorescence as an indicator of membrane-bound calcium. The results show that 1) FMLP-induced increased cytoplasmic calcium likely comes from at least two different pools. Calcium is released from one only after a high affinity receptor interaction and from the second also after a lower affinity interaction. The initial increment in cytosolic calcium does not appear to originate in the pool(s) reflected by CTC fluorescence. 2) Cytochalasin B strikingly alters the FMLP effect on membrane associated calcium, inducing a marked “recovery” phase which could be a reflection of fusion of granule membranes with the plasma membrane. 3) PMA, at concentrations inducing extensive specific granule release (≤ 10 ng/ml) has no measurable direct effect on membrane-bound or cytosolic calcium. However, PMA inhibits a subsequent CTC fluorescence response to FMLP and following the ionophore, A23187, it induces a clear decrease in cytosolic calcium. These indirect effects may be explained in terms of PMA's activation of protein kinase C.  相似文献   

20.
L-651,582, 5-amino-[4-(4-chlorobenzoyl)-3,5-dichlorobenzyl]-1,2,3-triazole-4- carboxamide, an antiproliferative and antiparasitic agent previously shown to affect 45Ca2+ uptake into mammalian cells, inhibits both receptor-mediated and voltage-dependent calcium entry in well characterized in vitro systems. Indo 1 fluorescence measurements of cytosolic calcium levels indicate that the drug has no effect on the initial transient release of internal stores of calcium stimulated by fMet-Leu-Phe in rat polymorphonuclear leukocytes. It does decrease the levels maintained subsequently, however, indicating blockage of calcium influx through receptor-operated channels. L-651,582 also blocks the stimulation of leukotriene B4 (LTB4) production by fMet-Leu-Phe with an IC50 = 0.5 micrograms/ml equal to that for calcium entry inhibition. The LTB4 inhibition is likely due to calcium entry inhibition since L-651,582 does not inhibit calmodulin or enzymes producing arachidonate metabolites. L-651,582 also inhibits potassium-stimulated 45Ca2+ influx into GH3 cells with an IC50 of 0.5 microgram/ml, indicating a block of voltage-gated L-type calcium channels. Patch voltage clamp measurements of current through L- and T-type calcium in guinea pig atrial cells also indicate that L-651,582 is a calcium antagonist. Block of L-type calcium channels is voltage-dependent, and the apparent dissociation constant for the high affinity state is 0.2 micrograms/ml. The IC50 for block of T-type calcium channels is 1.4 micrograms/ml. The inhibition of cellular proliferation and the production of arachidonate metabolites by L-651,582 may be the result of the nearly equipotent block of receptor-operated and voltage-gated calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号