首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Mutants of Neurospora crassa that are resistant to 4-methyl-tryptophan were found to differ in ability to synthesize kynureninase in the presence of the inducers kynurenine, 3-OH-kynurenine, N-formyl-kynurenine, tryptophan, and indole. One strain (mtr26), although incapable of accumulating intracellular pools of these compounds, showed induced synthesis of kynureninase, whereas the second (mtr21) could neither accumulate nor be induced by them. Strain mtr21, with the suppressor su(mtr), could not be induced by indole but was induced by tryptophan and kynurenine derivatives. These results suggest that the mtr mutation, in addition to altering the ability of these strains to concentrate tryptophan and its metabolites, may have some effect on either the intracellular distribution of tryptophan or directly on the synthesis of kynureninase.  相似文献   

2.
Summary It would thus appear that in Saccharomyces cerevisiae there are two forms of histidine-mediated control on the tryptophan pathway. In some strains histidine increases anthranilate synthetase and indole glycerol phosphate synthetase activities, while tryptophan synthetase decreases. In other strains histidine affects coordinately all enzymatic activities involved in tryptophan biosynthesis. The two groups of strains also differ in the formation, during the growth of the enzymatic activities involved in tryptophan biosynthesis. This difference in the relative rates at which the two enzymes are formed may explain the accumulation of intermediates in the cultural media of some strains. The derepression of anthranilate synthetase and indole glycerol phosphate synthetase activities by histidine is particularly manifest in the auxotrophic his3 strains that show these activities very depressed in histidine starvation; large amounts of this amino acid stimulate them to a considerably greater extent than in prototrophic strains.Abbreviations IGP imidazole glycerol phosphate - InGP indole glycerol phosphate - ASase anthranilate synthetase - InGPase indole-3-glycerol phosphate synthetase - TSase tryptophan synthetase - Tris tris (hydroxymethyl)-aminomethane This investigation was supported by a research grant of C.N.R. (Consiglio Nazionale delle Ricerche, Roma).  相似文献   

3.
A tryptophan auxotroph of aerobically grown Rodospirillum rubrum was isolated after mutagenesis and replica plating. The mutant grows on tryptophan or indole, accumulates indole glycerol phosphate, lacks the capacity to convert indole glycerol phosphate to indole glycerol phosphate to indole, and finally is defective in photosynthetic growth. The strain is, therefore, analogous to a Trp A mutant which is defective in the alpha-subunit structural gene of tryptophan synthetase.  相似文献   

4.
The following enzyme activities of the tryptophan-nicotinic acid pathway were studied in male New Zealand rabbits: liver tryptophan 2,3-dioxygenase, intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4-dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase. Intestine superoxide dismutase and serum tryptophan were also determined. Liver tryptophan 2,3-dioxygenase exists only as holoenzyme, but intestine indole 2,3-dioxygenase is very active and can be considered the key enzyme which determines how much tryptophan enters the kynurenine pathway also under physiological conditions. The elevated activity of indole 2,3-dioxygenase in the rabbit intestine could be related to the low activity of superoxide dismutase found in intestine. Kynurenine 3-monooxygenase appeared more active than kynurenine-oxoglutarate transaminase and kynureninase, suggesting that perhaps a major portion of kynurenine available from tryptophan may be metabolized to give 3-hydroxyanthranilic acid, the precursor of nicotinic acid. In fact, 3-hydroxyanthranilate 3,4-dioxygenase is much more active than the other previous enzymes of the kynurenine pathway. In the rabbit liver 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase show similar activities, but in the kidney 3-hydroxyanthranilate 3,4-dioxygenase activity is almost double. These data suggest that in rabbit tryptophan is mainly metabolized along the kynurenine pathway. Therefore, the rabbit can also be a suitable model for studying tryptophan metabolism in pathological conditions.  相似文献   

5.
6.
Hoch, J. A. (University of Illinois, Urbana), and R. D. DeMoss. Physiological effects of a constitutive tryptophanase in Bacillus alvei. J. Bacteriol. 90:604-610. 1965.-Tryptophanase synthesis in B. alvei is not under the control of tryptophan and is not subject to catabolite repression. Exogenously supplied tryptophan was converted to indole by tryptophanase, and was excreted into the culture medium. The amount of indole excreted was dependent upon the concentration of tryptophan supplied. At intermediate levels of tryptophan (5 to 15 mug/ml), the excreted indole was completely reutilized by the cell, in contrast to the result with higher levels. Indole reutil zation was shown to be dependent upon a functional tryptophan synthetase. In the absience of exogenous tryptophan, indole was excreted into the culture medium at an earlier physiological age. The early indole was shown not to be a consequence of tryptophanase action. The early indole accompanied uniformly the normal process of tryptophan biosynthesis, and the fission of indole-3-glycerol phosphate was suggested as the origin of the excreted indole.  相似文献   

7.
Tryptophan synthetase in Euglena gracilis strain G   总被引:3,自引:0,他引:3  
The five enzyme activities in the synthesis of l-tryptophan have been obtained in extracts of Euglena gracilis. One of these, tryptophan synthetase, has been studied in detail. The general catalytic properties of tryptophan synthetase, including the range of reactions catalyzed and its substrate and cofactor affinities, are similar to those reported for other organisms. The Euglena enzyme has two properties never previously observed for tryptophan synthetase. First, the rate of catalysis of the conversion of indole-glycerol phosphate to l-tryptophan remained at its maximal value and was unaffected by the ionic environment up to 0.3 m KCl. In contrast, the conversion of indole to tryptophan showed a sharp maximum at 0.08 m KCl. Second, the enzyme is a component of a complex that includes every enzyme in the pathway committed to tryptophan biosynthesis with the exception of anthranilate synthetase, the regulatory enzyme.  相似文献   

8.
Auxotrophs of Acinetobacter calcoaceticus blocked in each reaction of the synthetic pathway from chorismic acid to tryptophan were obtained after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. One novel class was found to be blocked in both anthranilate and p-aminobenzoate synthesis; these mutants (trpG) require p-aminobenzoate or folate as well as tryptophan (or anthranilate) for growth. The loci of six other auxotrophic classes requiring only tryptophan were defined by growth, accumulation, and enzymatic analysis where appropriate. The trp mutations map in three chromosomal locations. One group contains trpC and trpD (indoleglycerol phosphate synthetase and phosphoribosyl transferase) in addition to trpG mutations; this group is closely linked to a locus conferring a glutamate requirement. Another cluster contains trpA and trpB, coding for the two tryptophan synthetase (EC 4.2.1.20) subunits, along with trpF (phosphoribosylanthranilate isomerase); this group is weakly linked to a his marker. The trpE gene, coding for the large subunit of anthranilate synthetase, is unlinked to any of the above. This chromosomal distribution of the trp genes has not been observed in other organisms.  相似文献   

9.
Two different types of allelic complementation were observed in tryptophan synthetase mutants of the yeast Saccharomyces cerevisiae. Each type is associated with a different mechanism for the enzymatic conversion of indole-3-glycerol phosphate (InGP) to tryptophan. Mechanism I is utilized by a hybrid tryptophan synthetase that resembles, but is not identical with, the wild-type enzyme. Mechanism II is due to a sequential conversion of InGP to free indole, and indole to tryptophan. Two partially active mutant enzymes rather than a single hybrid enzyme catalyze the sequential reaction steps. This is an example of intracellular cross-feeding. The quantitative evaluation of mechanism II leads to the conclusion that tryptophan synthetase in yeast is most likely a dimer of two identical subunits.  相似文献   

10.
Bacillus alvei excretes indole during early exponential growth in acid-hydrolyzed casein medium. l-Threonine is the amino acid responsible for "early" indole excretion, and the amount of indole excreted is directly related to the amount of l-threonine in the medium. "Early-indole" excretion can be prevented by the continuous addition of serine (3.1 mumoles per ml per hr) or by substituting a mutant with an impaired ability to degrade serine. The addition of serine to a culture during the period of indole excretion halts the excretion and stimulates indole utilization. Threonine is a competitive inhibitor of serine (K(i) = 0.6 m) in the tryptophan synthetase B reaction. The internal tryptophan concentration increases during the period of indole excretion, suggesting that threonine acts by increasing the activity of the tryptophan pathway. This view is supported by experiments demonstrating that anthranilic acid and indoleacrylic acid also stimulate indole excretion. A metabolic explanation is offered and discussed.  相似文献   

11.
12.
In order to test the ability of phosphate groups to quench the fluorescence of tryptophan in protein-nucleic acid complexes we have studied the effect of various phosphate ions on the fluorescence of tryptophan derivatives. Unsubstituted and monoalkyl monoanions (H2PO4- and CH3OPO3H-) quench the fluorescence of all investigated indole derivatives while the dimethyl anion (CH3O)2 PO2- does not. This suggests that quenching of tryptophan fluorescence by phosphate monoanions requires the presence of an acidic OH group and could be due to a proton transfer from the phosphate ion to the indole chromophore. Trianions (PO4 3-4) which are strong proton acceptors quench the fluorescence of all tryptophan derivatives except N(1)methyl tryptophan. This result strongly supports our proposal that quenching of tryptophan fluorescence by phosphate trianions occurs through deprotonation of the NH indole group. Bianions (HPO '4(7), and CH3O PO3 2-3) quench the fluorescence of several indole derivatives including N-acetyl tryptophanamide but have no effect on tryptophan or N(1)-methyl tryptophan. From our results we conclude that phosphate groups of nucleic acids are not able to quench the fluorescence of tryptophyl residues in protein-nucleic acid complexes except if an accessible residue is located near a phosphorylated polynucleotide chain end.  相似文献   

13.
The enhancement of ergot alkaloid production by tryptophan and its analogues in both normal and high-phosphate cultures is more directly related to increased dimethylallyltryptophan (DMAT) synthetase activity rather than to a lack of regulation of the tryptophan biosynthetic enzymes. Thiotryptophan [beta-(1-benzo-thien-3-yl)-alanine] is rather ineffective in the end product regulation of tryptophan biosynthesis, whereas tryptophan and 5-methyltryptophan are potent effectors. The presence of increased levels of DMAT synthetase in ergot cultures supplemented with tryptophan or thiotryptophan, and to a lesser extent with 5-methyltryptophan, suggests that the induction effect involves de novo synthesis of the enzyme. Thiotryptophan and tryptophan but not 5-methyltryptophan can overcome the block of alkaloid synthesis by inorganic phosphate. The results with thiotryptophan indicate that the phosphate effect cannot be explained merely on the basis of a block of tryptophan synthesis.  相似文献   

14.
The total activity of three key enzymes and the flux through eight steps of aromatic amino acid metabolism have been determined in liver cells isolated from rats fed either control or pyridoxine-free diet for 5-6 weeks. The pyridoxine-free diet caused a decrease in the catabolism of tyrosine and phenylalanine because of a drop in the flux through tyrosine aminotransferase. This decrease of expressed cellular tyrosine aminotransferase activity can be fully explained in terms of loss of cofactor. Larger decreases in the catabolism of tryptophan were seen after pyridoxine deprivation. The decreased extent of tryptophan catabolism can be solely attributed to loss of cofactor or increased degradation of kynureninase. Inhibition of tryptophan 2,3-dioxygenase was seen in pyridoxine deficiency, probably because of the buildup of the kynurenine metabolites. The control strength of kynureninase, for flux through kynureninase, was calculated to be less than or equal to 0.004, but 0.41 after pyridoxine deprivation. The sensitivity of the three pathways to pyridoxine deprivation is interpreted and discussed in terms of the different affinities for pyridoxal phosphate and the control strengths of the pyridoxal phosphate-dependent enzymes, tyrosine aminotransferase and kynureninase.  相似文献   

15.
Tryptophan auxotrophs were isolated and used to analyze the regulation of tryptophan biosynthesis in Zymomonas mobilis. Twelve tryptophan auxotrophs were cassified as trp E, B or A based on accumulation of, or growth on, indole and anthranilic acid. Trp B mutants were found to accumulate indole when grown on limiting, but not on excess tryptophan, suggesting that tryptophan plays a role in regulating its biosynthesis. Tryptophan synthase and indoleglycerol phosphate synthase specific activities were measured in the wild-type strain and two trp mutants grown in limiting or excess tryptophan. Neither activity was repressed by exogenous tryptophan.Abbreviations CDRP O-(carboxyphenol amino)-1 deoxyribulose 5-phosphate - IGPS indoleglycerol phosphate synthase - TS tryptophan synthase Dedicated in memory of Dr. O. H. Smith  相似文献   

16.
Two types of kynureninase were isolated from Neurospora crassa IFO 6068. The formation of one of them, which was separated from the inducible kynureninase by DEAE-cellulose chromatography, was independent of the presence of tryptophan in the growth medium. Ouchterlony double-diffusion analysis and immunochemical titration indicated that the constitutive-type enzyme is immunologically different from the inducible enzyme. We confirmed by a selective assay method with antiserum that the addition of tryptophan to the medium does not affect the formation of one of the enzymes (constitutive-type). The constitutive kynureninase was purified approximately 650-fold and was free of the inducible enzyme as judged by analytical gel electrophoresis. The molecular weight and optimum pH values of both enzymes are very similar. However, the constitutive enzyme shows much higher activity and affinity for L-3-hydroxykynurenine than for L-kynurenine, suggesting that the enzyme functions biosynthetically as a 3-hydroxykynureninase. Constitutive kynureninase activities were widely found in all the fungi tested, whereas the inducible enzyme activity was not present in Mucor or Rhizopus species. The inducible enzymes of all the Neurospora strains examined were shown to be immunologically identical.  相似文献   

17.
A convenient method for the synthesis of l-tryptophan analogues is described. The method utilizes E. coli tryptophan synthetase, which catalyses the condensation of indole and l-serine to yield l-tryptophan. It is found that several indole analogues will replace indole as substrate for the enzyme to give the corresponding l-tryptophan analogues in good yield. By using [14C]serine, analogues can be prepared radioactively labeled in the side-chain carbon atoms.  相似文献   

18.
The failure of l-leucine to stimulate ergot alkaloid production in a synthetic medium indicates that the previously observed stimulation by tryptophan and tryptophan analogues does not merely represent a nutritional effect. Tryptophan, but not mevalonate or 5-methyltryptophan, is able to overcome the inhibition of alkaloid synthesis by high levels of inorganic phosphate. Therefore, high phosphate levels seem to limit the synthesis of tryptophan; they may, in addition, prevent induction of alkaloid synthesis by preventing accumulation of tryptophan. Experiments which indicate a 2- to 3-fold temporary increase of intracellular free tryptophan and a 20- to 25-fold increase of tryptophan synthetase activity during the transition period between growth and alkaloid production phase are in agreement with the previously postulated induction of alkaloid synthesis by tryptophan. The latter experiments also indicate 4- to 6-fold repression of this enzyme by tryptophan.  相似文献   

19.
1. Tryptophan synthetase B of three strains of Bacillus subtilis was prepared from ;exo-protoplastic' and ;endo-protoplastic' fractions; the enzyme from ;exo-protoplastic' fraction was purified 30- to 120-fold by ammonium sulphate precipitation and DEAE-cellulose column chromatography; the latter step separated this enzyme from tryptophan synthetase A, tryptophanase and proteolytic enzymes, but the purified preparations were not stable. 2. The activity of tryptophan synthetase B did not depend on the presence of tryptophan synthetase A. 3. Tryptophan synthetases B of the strains tested differed in their utilization of 2- and 7-methylindole as compared with indole; this suggests that these tryptophan synthetases B are not identical.  相似文献   

20.
Trifluoroalanine is a mechanism-based inactivator of Escherichia coli tryptophan indole-lyase (tryptophanase) and E. coli tryptophan synthase (R. B. Silverman and R. H. Abeles, 1976, Biochemistry 15, 4718-4723). We have found that indole is able to prevent inactivation of tryptophan indole-lyase by trifluoroalanine. The protection of tryptophan indole-lyase by indole exhibits saturation kinetics, with a KD of 0.03 mM, which is comparable to the KI for inhibition of pyruvate ion formation (0.01 mM) and the Km for L-tryptophan synthesis. Fluoride electrode measurements indicate the formation of 28 mol of fluoride ion per mole of enzyme during inactivation of tryptophan indole-lyase, and 121 mol of fluoride ion are formed per mole of enzyme in the presence of 2 mM indole during the same incubation period. 19F NMR spectra of reaction mixtures of tryptophan indole-lyase and trifluoroalanine showed evidence only for fluoride ion formation, in either the absence or the presence of indole, and difluoropyruvic acid was not detected. The partition ratio, kcat/kinact, is estimated to be 9. Tryptophan indole-lyase in the presence of trifluoroalanine exhibits visible absorption peaks at 446 and 478 nm, which decay at the same rate as inactivation. However, in the presence of 1 mM indole and trifluoralanine, tryptophan indole-lyase exhibits a peak only at 420 nm, and the spectra show a gradual increase at 300-310 nm with incubation. In contrast, tryptophan synthase is not protected by indole from inactivation by trifluoroalanine, and the absorption peak at 408 nm for the tryptophan synthase-trifluoroalanine complex is unaffected by indole. These results demonstrate that inactivation of tryptophan indole-lyase occurs via a catalytically competent species, probably the beta,beta-difluoro-alpha-aminoacrylate intermediate, which can be partitioned from inactivation to products by a reactive aromatic nucleophile, indole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号