首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have combined the culture-independent methods of high-throughput sequencing of chaperonin-60 PCR product libraries and quantitative PCR to profile and quantify the small-intestinal microflora of pigs fed diets based on corn, wheat, or barley. A total of 2,751 chaperonin-60 PCR product clones produced from samples of ileum digesta were examined. The majority (81%) of these clones contained sequences independently recovered from all three libraries; 372 different nucleotide sequences were identified, but only 14% of the 372 different sequences were recovered from all three libraries. Taxonomic assignments of the library sequences were made by comparison to a reference database of chaperonin-60 sequences combined with phylogenetic analysis. The taxa identified are consistent with previous reports of pig ileum microflora. Frequencies of each sequence in each library were calculated to identify taxa that varied in frequency between the corn, barley, and wheat libraries. The chaperonin-60 sequence inventory was used as a basis for designing PCR primer sets for taxon-specific quantitative PCR. Results of quantitative PCR analysis of ileum digesta confirmed the relative abundances of targeted taxa identified with the library sequencing approach. The results of this study indicate that chaperonin-60 clone libraries can be valid profiles of complex microbial communities and can be used as the basis for producing quantitative PCR assays to measure the abundance of taxa of interest during experimentally induced or natural changes in a community.  相似文献   

2.
Complex microbial communities remain poorly characterized despite their ubiquity and importance to human and animal health, agriculture, and industry. Attempts to describe microbial communities by either traditional microbiological methods or molecular methods have been limited in both scale and precision. The availability of genomics technologies offers an unprecedented opportunity to conduct more comprehensive characterizations of microbial communities. Here we describe the application of an established molecular diagnostic method based on the chaperonin-60 sequence, in combination with high-throughput sequencing, to the profiling of a microbial community: the pig intestinal microbial community. Four libraries of cloned cpn60 sequences were generated by two genomic DNA extraction procedures in combination with two PCR protocols. A total of 1,125 cloned cpn60 sequences from the four libraries were sequenced. Among the 1,125 cloned cpn60 sequences, we identified 398 different nucleotide sequences encoding 280 unique peptide sequences. Pairwise comparisons of the 398 unique nucleotide sequences revealed a high degree of sequence diversity within the library. Identification of the likely taxonomic origins of cloned sequences ranged from imprecise, with clones assigned to a taxonomic subclass, to precise, for cloned sequences with 100% DNA sequence identity with a species in our reference database. The compositions of the four libraries were compared and differences related to library construction parameters were observed. Our results indicate that this method is an alternative to 16S rRNA sequence-based studies which can be scaled up for the purpose of performing a potentially comprehensive assessment of a given microbial community or for comparative studies.  相似文献   

3.
The alien addition line TAI-27 contains a pair of chromosomes of Thinopyrum intermedium that carry resistance against barley yellow dwarf virus (BYDV). A subtractive library was constructed using the leaves of TAI-27, which were infected by Schizaphis graminum carrying the GAV strain of BYDV, and the control at the three-leaf stage. Nine differentially expressed genes were identified from 100 randomly picked clones and sequenced. Two of the nine clones were highly homologous with known genes. Of the remaining seven cDNA clones, five clones matched with known expressed sequence tag (EST) sequences from wheat and (or) barley whereas the other two clones were unknown. Five of the nine differentially expressed sequences (WTJ9, WTJ11, WTJ15, WTJ19, and WTJ32) were highly homologous (identities >94%) with ESTs from wheat or barley challenged with pathogens. These five sequences and another one (WTJ18) were also highly homologous (identities >86%) with abiotic stress induced ESTs in wheat or barley. Reverse Northern hybridization showed that seven of the nine differentially expressed cDNA sequences hybridized with cDNA of T. intermedium infected by BYDV. Three of these also hybridized with cDNA of line 3B-2 (a parent of TAI-27) infected by BYDV. The alien chromosome in TAI-27 was microdissected. The second round linker adaptor mediated PCR products of the alien chromosomal DNA were labeled with digoxygenin and used as the probe to hybridize with the nine differentially expressed genes. The analysis showed that seven differentially expressed genes were homologous with the alien chromosome of TAI-27. These seven differentially expressed sequences could be used as ESTs of the alien chromosome of TAI-27. This research laid the foundation for screening and cloning of new specific functional genes conferring resistance to BYDV and probably other pathogens.  相似文献   

4.
Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology.  相似文献   

5.
目的 从东方田鼠的部分BAC文库中筛选微卫星.方法 应用非放射性的菌落杂交方法和磁珠富集法从东方田鼠的BAC文库中筛选高质量的微卫星标记.结果 以地高辛标记的寡聚核苷酸(CA)20为探针,通过菌落杂交法从136个东方田鼠BAC克隆中筛选出杂交信号最强的20个阳性克隆.再将这20个阳性克隆分别通过链霉亲和素磁珠法构建亚克隆文库,从中选取400个经PCR鉴定为阳性的亚克隆进一步测序分析,共得到220个微卫星序列,阳性率55%.选取重复次数高,侧翼序列完整的微卫星序列设计74对引物,共有35对引物能扩增出清晰的条带,其中16对引物具有多态性.结论 成功且高效地从阳性BAC克隆中筛选出微卫星序列,这些微卫星和阳性BAC克隆可用于后续的定位研究.  相似文献   

6.
Summary A library of wheat genomic DNA HpaII tiny fragments (HTF), sized below 500 bp, has been constructed. Of the clones in the library 80% belong to the single/low-copy category, while 12% of the clones are nuclear repetitive sequences and 8% originate from the chloroplast and mitochondrial DNA. This result shows a substantial enrichment in the single/low-copy sequences of the wheat genome, which contains at least 80% repetitive sequences. Twenty-nine random single/lowcopy clones were analysed further for wheat chromosome location, cross-hybridisation to barley DNA and their association with rare-cutting, C-methylation-sensitive restriction sites. The results show that the HTF clones are associated more frequently than expected with NotI, MluI, NruI and PstI sites in wheat and barley genomic DNA. The 12% repetitive fraction of the clones contain both moderately and highly repetitive sequences, but no tandemly repeated sequences. The level of enrichment for single/low-copy sequences indicates that libraries of this type are a valuable source of probes for RFLP mapping. In addition, the close association of the HTF clones with rare-cutting restriction enzyme sites ensures that HTF clones will have a useful role in the construction of long-range physical maps in wheat.  相似文献   

7.
A number of clones containing major endosperm-specifically transcribed gene copies were selected from a cDNA library developed on the basis of barley endosperm mRNA. Approx. 30% of the recombinant clones carried sequences homologous to mRNA of various cereal storage proteins. Some of them appeared to be related to cDNA clones of wheat and barley storage proteins. The typical insert length ranged from 0.3 to 1.7 kB. A couple of clones among them were selected which revealed positive hybridization with all probes used. The positive signals disappeared after stringent washing of the filters. The nucleotide sequences of two representatives of the group were determined and corresponding amino acid sequence deduced after subsequent computer analysis. The comparison with known cereal storage protein genes revealed relatively high homology level with the central part of wheat high molecular weight (HMW) glutenine subunit genes. The fact suggests the cloned gene to belong to barley D-hordein family.  相似文献   

8.
The characterization of cDNA clones coding for wheat storage proteins.   总被引:18,自引:4,他引:14       下载免费PDF全文
Poly(A)+ RNA isolated from the developing wheat endosperm var. Chinese Spring, has been used as template for the construction of a cDNA library. Within the library, clones have been identified by in vitro translation of hybrid-selected mRNA which encode alpha/beta gliadin related sequences and gamma-gliadin related sequences. The DNA sequence of one such clone has been determined and it shows homology with that of a clone encoding a barley storage protein, B-hordein. The sequence includes a tandem DNA repeat which is discussed in relation to the generation of diversity within the gliadins.  相似文献   

9.
We have developed the 2-step PCR method, a kind of suppression PCR procedure, to isolate simple sequence repeats (SSRs) from common wheat (Triticum aestivum L.) in a more convenient manner. This system requires neither genomic library screening nor the SSR-enrichment procedure. As a result, we designed 131 primer pairs based on isolated SSRs from not only genomic DNA, but also transformation-competent artificial chromosome (TAC) clones. It has been demonstrated that 34 of the 131 SSR markers developed were polymorphic among 8 wheat lines. Four of 34 polymorphic SSR markers were derived from TAC clones, indicating that this method could be applied to the targeted development of unique SSR markers in large genomic DNA libraries such as those composed of bacterial artificial chromosomes (BACs). A considerable number of isolated SSR clones had similarities with part of several long terminal repeats of retrotransposons (LTR-RTs) identified in various Triticeae genome sequences. Most of those SSRs showed smear amplification profiles, suggesting that a considerable number of dysfunctional SSRs originating from repetitive DNA components, especially LTR-RTs, might exist in the common wheat genome.  相似文献   

10.
Sequence-tagged-site-facilitated PCR for barley genome mapping   总被引:6,自引:0,他引:6  
Summary Speed, efficiency, and safety considerations have led many genome mapping projects to evaluate polymerase chain reaction (PCR) sequence amplification as an alternative to Southern blot analysis. However, the availability of informative primer sequences can be a limiting factor in PCR-based mapping. An alternative to random amplified polymorphism detection (RAPD) is the sequence-tagged-site (STS) approach. If informative primer sequences could be derived from known sequences, then current maps, which are based on both known function and anonymous clones, might be easily converted to maps utilizing PCR technology. In this paper, four pairs of primer sequences were obtained from published sequences, and four pairs were obtained by sequencing portions of DNA clones from genomic clones derived from a random genomic library used in the North American Barley Genome Mapping Project (NABGMP). These primers were used to screen for polymorphisms in the progeny of a winter x spring and a spring x spring barley cross. Two types of polymorphisms were distinguished using these primer sets: (1) insertion/deletion events that could be read directly from agarose gels, and (2) point mutation events. The latter were identified using polyacrylamide-gel electrophoresis of PCR products following digestion with restriction endonucleases (four-base cutters). To determine whether the PCR-based polymorphisms were allelic to polymorphisms identified by the clones from which the primer sequences derived, chromosomal assignments and (when possible) co-segregation analysis was performed.  相似文献   

11.
Rice is an important crop and a model system for monocot genomics, and is a target for whole genome sequencing by the International Rice Genome Sequencing Project (IRGSP). The IRGSP is using a clone by clone approach to sequence rice based on minimum tiles of BAC or PAC clones. For chromosomes 10 and 3 we are using an integrated physical map based on two fingerprinted and end-sequenced BAC libraries to identifying a minimum tiling path of clones. In this study we constructed and tested two rice genomic libraries with an average insert size of 10 kb (10-kb library) to support the gap closure and finishing phases of the rice genome sequencing project. The HaeIII library contains 166,752 clones covering approximately 4.6x rice genome equivalents with an average insert size of 10.5 kb. The Sau3AI library contains 138,960 clones covering 4.2x genome equivalents with an average insert size of 11.6 kb. Both libraries were gridded in duplicate onto 11 high-density filters in a 5 x 5 pattern to facilitate screening by hybridization. The libraries contain an unbiased coverage of the rice genome with less than 5% contamination by clones containing organelle DNA or no insert. An efficient method was developed, consisting of pooled overgo hybridization, the selection of 10-kb gap spanning clones using end sequences, transposon sequencing and utilization of in silico draft sequence, to close relatively small gaps between sequenced BAC clones. Using this method we were able to close a majority of the gaps (up to approximately 50 kb) identified during the finishing phase of chromosome-10 sequencing. This method represents a useful way to close clone gaps and thus to complete the entire rice genome.  相似文献   

12.
Potassium (K+) channels are critical for a variety of cell functions, including modulation of action potentials, determination of resting membrane potential, and development of memory and learning. In addition to their role in regulating myocyte excitability, cardiac K+ channels control heart rate and coronary vascular tone and are implicated in the development of arrhythmias. We report here the cloning and sequencing of a k+ channel gene, KCNA1, derived from a human cardiac cDNA library and the chromosomal localization of the corresponding genomic clone. Oligonucleotides based on a delayed rectifier K+ channel gene were used in PCR reactions with human genomic DNA to amplify the S4-S6 regions of several different K+ channel genes. These sequences were used to isolate clones from a human cardiac cDNA library. We sequenced one of these clones, HCK1. HCK1 contains putative S2-S6 domains and shares approximately 70% sequence homology with previously isolated Shaker homologues. HCK1 was used to screen human cosmid libraries and a genomic clone was isolated. By sequencing the genomic clones, a putative S1 domain and translation initiation sequences were identified. Genomic mapping using human-rodent somatic cell panels and in situ hybridization with human metaphase chromosomes have localized KCNA1 to the distal short arm of human chromosome 12. This work is an important step in the study of human cardiac K+ channel structure and function and will be of use in the study of human inherited disease.  相似文献   

13.
Full-length cDNA (FLcDNA) libraries consisting of 172,000 clones were constructed from a two-row malting barley cultivar (Hordeum vulgare 'Haruna Nijo') under normal and stressed conditions. After sequencing the clones from both ends and clustering the sequences, a total of 24,783 complete sequences were produced. By removing duplicates between these and publicly available sequences, 22,651 representative sequences were obtained: 17,773 were novel barley FLcDNAs, and 1,699 were barley specific. Highly conserved genes were found in the barley FLcDNA sequences for 721 of 881 rice (Oryza sativa) trait genes with 50% or greater identity. These FLcDNA resources from our Haruna Nijo cDNA libraries and the full-length sequences of representative clones will improve our understanding of the biological functions of genes in barley, which is the cereal crop with the fourth highest production in the world, and will provide a powerful tool for annotating the barley genome sequences that will become available in the near future.  相似文献   

14.
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.  相似文献   

15.
We have identified 3 cDNA clones related to the high-Mr group of storage proteins in barley endosperm, the D-hordeins. A cDNA library has been constructed from wheat endosperm poly(A+)-RNA and screened using one of the D-hordein cDNA clones. Two wheat clones which cross-hybridised to the barley clone have been identified, by hybrid-release translation and nucleotide sequence analysis, as partial copies of mRNAs encoding the high-Mr gluten polypeptides of wheat.  相似文献   

16.
Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.  相似文献   

17.
Three large-insert genomic DNA libraries of common wheat, Triticum aestivum cv. Chinese Spring, were constructed in a newly developed transformation-competent artificial chromosome (TAC) vector, pYLTAC17, which accepts and maintains large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. The vector contains the cis sequence required for Agrobacterium-mediated gene transfer into grasses. The average insert sizes of the three genomic libraries were approximately 46, 65 and 120 kbp, covering three haploid genome equivalents. Genomic libraries were stored as frozen cultures in a 96-well format, each well containing approximately 300-600 colonies (12 plates for small library, four for medium-size library and four for large library). In each of the libraries, approximately 80% of the colonies harbored genomic DNA inserts of >50 kbp. TAC clones containing gene(s) of interest were identified by the pooled PCR technique. Once the target TAC clones were isolated, they could be immediately transferred into grass genomes with the Agrobacterium system. Five clones containing the thionin type I genes (single copy per genome), corresponding to each of the three genomes (A, B and D), were successfully selected by the pooled PCR method, in addition to an STS marker (aWG464; single copy per genome) and CAB (a multigene family). TAC libraries constructed as described here can be used to isolate genomic clones containing target genes, and to carry out genome walking for positional cloning.  相似文献   

18.
Genomic DNA sequences and other genomic resources are essential towards the elucidation of the genomic bases of adaptive divergence and reproductive isolation. Here, we describe the construction, characterization and screening of a nonarrayed BAC library for lake whitefish (Coregonus clupeaformis). We then show how the combined use of BAC library screening and next-generation sequencing can lead to efficient full-length assembly of candidate genes. The lake whitefish BAC library consists of 181,050 clones derived from a single heterozygous fish. The mean insert size is 92 Kb, representing 5.2 haploid genome equivalents. Ten BAC clones were isolated following a quantitative real-time PCR screening approach that targeted five previously identified candidate genes. Sequencing of these clones on a 454 GS FLX system yielded 178,000 reads with a mean length of 358 bp, for a total of 63.8 Mb. De novo assembly and annotation then allowed retrieval of contigs corresponding to each candidate gene, which also contained up- and/or downstream noncoding sequences. These results suggest that the lake whitefish BAC library combined with next-generation sequencing technologies will be key resources to achieve a better understanding of both adaptive divergence and reproductive isolation in lake whitefish species pairs as well as salmonid evolution in general.  相似文献   

19.
P Wong  I MacDonald  M Tenniswood 《Gene》1989,85(1):59-65
We describe a simple and rapid method that can be used to identify sequences present in any two DNA libraries (either genomic or cDNA), provided only that the libraries are in different vectors with different cloning sites. This procedure makes use of the polymerase chain reaction (PCR) to amplify the inserts of one library. The product of the PCR reaction is then used to screen a second library to identify sequences which are common to both. We illustrate the use of this method for the systematic isolation of human X-chromosome-linked genomic clones that harbor sequences expressed in human chorioretinal tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号