首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report here that RyRs interact with and gate the store-operated hTrp3 and Icrac channels. This gating contributes to activation of hTrp3 and Icrac by agonists. Coupling of hTrp3 to IP3Rs or RyRs in the same cells was found to be mutually exclusive. Biochemical and functional evidence suggest that mutually exclusive coupling reflects clustering and segregation of hTrp3-IP3R and hTrp3-RyR complexes in plasma membrane microdomains. Gating of CCE by RyRs indicates that gating by conformational coupling is not unique to skeletal muscle but is a general mechanism for communication between events in the plasma and endoplasmic reticulum membranes.  相似文献   

2.
Repetitive hormone-induced changes in concentration of free cytoplasmic Ca2+ in hepatocytes require Ca2+ entry through receptor-activated Ca2+ channels and SOCs (store-operated Ca2+ channels). SOCs are activated by a decrease in Ca2+ concentration in the intracellular Ca2+ stores, but the molecular components and mechanisms are not well understood. Some studies with other cell types suggest that PLC-gamma (phospholipase C-gamma) is involved in the activation of receptor-activated Ca2+ channels and/or SOCs, independently of PLC-gamma-mediated generation of IP3 (inositol 1,4,5-trisphosphate). The nature of the Ca2+ channels regulated by PLC-gamma has not been defined clearly. The aim of the present study was to determine if PLC-gamma is required for the activation of SOCs in liver cells. Transfection of H4IIE cells derived from rat hepatocytes with siRNA (short interfering RNA) targeted to PLC-gamma1 caused a reduction (by approx. 70%) in the PLC-gamma1 protein expression, with maximal effect at 72-96 h. This was associated with a decrease (by approx. 60%) in the amplitude of the I(SOC) (store-operated Ca2+ current) developed in response to intracellular perfusion with either IP(3) or thapsigargin. Knockdown of STIM1 (stromal interaction molecule type 1) by siRNA also resulted in a significant reduction (approx. 80% at 72 h post-transfection) of the I(SOC) amplitude. Immunoprecipitation of PLC-gamma1 and STIM1, however, suggested that under the experimental conditions these proteins do not interact with each other. It is concluded that the PLC-gamma1 protein, independently of IP3 generation and STIM1, is required to couple endoplasmic reticulum Ca2+ release to the activation of SOCs in the plasma membrane of H4IIE liver cells.  相似文献   

3.
The exact role of TRPC1 in store-operated calcium influx channel (SOCC) function is not known. We have examined the effect of overexpression of full-length TRPC1, depletion of endogenous TRPC1, and expression of TRPC1 in which the proposed pore region (S5-S6, amino acids (aa) 557-620) was deleted or modified by site-directed mutagenesis on thapsigargin- and carbachol-stimulated SOCC activity in HSG cells. TRPC1 overexpression induced channel activity that was indistinguishable from the endogenous SOCC activity. Transfection with antisense hTRPC1 decreased SOCC activity although characteristics of SOCC-mediated current, I(SOC), were not altered. Expression of TRPC1 Delta 567-793, but not TRPC1 Delta 664-793, induced a similar decrease in SOCC activity. Furthermore, TRPC1 Delta 567-793 was co-immunoprecipitated with endogenous TRPC1. Simultaneous substitutions of seven acidic aa in the S5-S6 region (Asp --> Asn and Glu --> Gln) decreased SOCC-mediated Ca(2+), but not Na(+), current and induced a left shift in E(rev). Similar effects were induced by E576K or D581K, but not D581N or E615K, substitution. Furthermore, expressed TRPC1 proteins interacted with each other. Together, these data demonstrate that TRPC1 is required for generation of functional SOCC in HSG cells. We suggest that TRPC1 monomers co-assemble to form SOCC and that specific acidic aa residues in the proposed pore region of TRPC1 contribute to Ca(2+) influx.  相似文献   

4.
4-Chloro-m-cresol (4-CmC) is a potent and specific activator of the intracellular Ca2+ release channel, the ryanodine receptor (RyR). We have previously shown that RyR1 expressed in dyspedic 1B5 myotubes is activated by 4-CmC, whereas RyR3 is not (Fessenden, J. D., Wang, Y., Moore, R. A., Chen, S. R. W., Allen, P. D., and Pessah, I. N. (2000) Biophys. J. 79, 2509-2525). To identify region(s) on RyR1 that are responsible for mediating activation by 4-CmC, we expressed RyR1-RyR3 chimeric proteins in dyspedic 1B5 myotubes and then measured 4-CmC-induced increases in intracellular Ca2+. Substitution of the C-terminal third of RyR1 into RyR3 imparted 4-CmC sensitivity to the resulting chimera, thus suggesting that determinants required for activation by 4-CmC are located in this region. We subdivided the C-terminal third of RyR1 into smaller segments and identified two overlapping regions of RyR1 (amino acids 3769-4180 and 4007-4382) that each imparted 4-CmC sensitivity to RyR3. Substitution of the 173 amino acids of RyR1 common to these two chimeras (amino acids 4007-4180) also weakly restored 4-CmC sensitivity in the resulting chimera. To confirm these findings, we created a complementary set of chimeras containing RyR3 substitutions in RyR1. Substitution of the RyR3 C terminus into RyR1 disrupted 4-CmC sensitivity in the resulting chimera. In addition, substitution of the corresponding RyR3 sequence into positions 4007-4180 of RyR1 disrupted 4-CmC sensitivity. Taken together, these results suggest that essential determinants required for activation of RyR1 by 4-CmC reside within a 173-amino acid region between residues 4007 and 4180.  相似文献   

5.
In skeletal muscle, coupling between the 1,4-dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) underlies excitation-contraction (EC) coupling. The III-IV loop of the DHPR alpha(1S) subunit binds to a segment of RyR1 in vitro, and mutations in the III-IV loop alter the voltage dependence of EC coupling, raising the possibility that this loop is directly involved in signal transmission from the DHPR to RyR1. To clarify the role of the alpha(1S) III-IV loop in EC coupling, we examined the functional properties of a chimera (GFP-alpha(1S)[III-IVa]) in which the III-IV loop of the divergent alpha(1A) isoform replaced that of alpha(1S). Dysgenic myotubes expressing GFP-alpha(1S)[III-IVa] yielded myoplasmic Ca(2+) transients that activated at approximately 10 mV more hyperpolarized potentials and that were approximately 65% smaller than those of GFP-alpha(1S). A similar reduction was observed in voltage-dependent charge movements for GFP-alpha(1S)[III-IVa], indicating that the chimeric channels trafficked less well to the membrane but that those that were in the membrane functioned as efficiently in EC coupling as GFP-alpha(1S). Relative to GFP-alpha(1S), L-type currents mediated by GFP-alpha(1S)[III-IVa] were approximately 40% smaller and activated at approximately 5 mV more hyperpolarized potentials. The altered gating of GFP-alpha(1S)[III-IVa] was accentuated by exposure to +/-Bay K 8644, which caused a much larger hyperpolarizing shift in activation compared with its effect on GFP-alpha(1S). Taken together, our observations indicate that the alpha(1S) III-IV loop is not directly involved in EC coupling but does influence DHPR gating transitions important both for EC coupling and activation of L-type conductance.  相似文献   

6.
The prostacyclin receptor (IP), a G protein-coupled receptor, mediates the actions of the prostanoid prostacyclin and its mimetics. IPs from a number of species each contain identically conserved putative isoprenylation CAAX motifs, each with the sequence CSLC. Metabolic labeling of human embryonic kidney (HEK) 293 cells stably overexpressing the hemagluttinin epitope-tagged IP in the presence of [(3)H]mevalonolactone established that the mouse IP is isoprenylated. Studies involving in vitro assays confirmed that recombinant forms of the human and mouse IP are modified by carbon 15 farnesyl isoprenoids. Disruption of isoprenylation, by site-directed mutagenesis of Cys(414) to Ser(414), within the CAAX motif, abolished isoprenylation of IP(SSLC) both in vitro and in transfected cells. Scatchard analysis of the wild type (IP) and mutant (IP(SSLC)) receptor confirmed that each receptor exhibited high and low affinity binding sites for [(3)H]iloprost, which were not influenced by receptor isoprenylation. Whereas stable cell lines overexpressing IP generated significant agonist (iloprost and cicaprost)-mediated increases in cAMP relative to nontransfected cells, cAMP generation by IP(SSLC) cells was not significantly different from the control, nontransfected HEK 293 cells. Moreover, co-expression of the alpha (alpha) subunit of Gs generated significant augmentations in cAMP by IP but not by IP(SSLC) cells. Whereas IP also demonstrated significant, dose-dependent increases in [Ca(2+)](i) in response to iloprost or cicaprost compared with the nontransfected HEK 293 cells, mobilization of [Ca(2+)](i) by IP(SSLC) was significantly impaired. Co-transfection of cells with either Galpha(q) or Galpha(11) resulted in significant augmentation of agonist-mediated [Ca(2+)](i) mobilization by IP cells but not by IP(SSLC) cells or by the control, HEK 293 cells. In addition, inhibition of isoprenylation by lovastatin treatment significantly reduced agonist-mediated cAMP generation by IP in comparison to the nonisoprenylated beta(2) adrenergic receptor or nontreated cells. Hence, isoprenylation of IP does not influence ligand binding but is required for efficient coupling to the effectors adenylyl cyclase and phospholipase C.  相似文献   

7.
The dihydropyridine receptor (DHPR) in the skeletal muscle plasmalemma functions as both voltage-gated Ca(2+) channel and voltage sensor for excitation-contraction (EC) coupling. As voltage sensor, the DHPR regulates intracellular Ca(2+) release via the skeletal isoform of the ryanodine receptor (RyR-1). Interaction with RyR-1 also feeds back to increase the Ca(2+) current mediated by the DHPR. To identify regions of the DHPR important for receiving this signal from RyR-1, we expressed in dysgenic myotubes a chimera (SkLC) having skeletal (Sk) DHPR sequence except for a cardiac (C) II-III loop (L). Tagging with green fluorescent protein (GFP) enabled identification of expressing myotubes. Dysgenic myotubes expressing GFP-SkLC or SkLC lacked EC coupling and had very small Ca(2+) currents. Introducing a short skeletal segment (alpha(1S) residues 720-765) into the cardiac II-III loop (replacing alpha(1C) residues 851-896) of GFP-SkLC restored both EC coupling and Ca(2+) current densities like those of the wild type skeletal DHPR. This 46-amino acid stretch of skeletal sequence was recently shown to be capable of transferring strong, skeletal-type EC coupling to an otherwise cardiac DHPR (Nakai, J., Tanabe, T., Konno, T., Adams, B., and Beam, K.G. (1998) J. Biol. Chem. 273, 24983-24986). Thus, this segment of the skeletal II-III loop contains a motif required for both skeletal-type EC coupling and RyR-1-mediated enhancement of Ca(2+) current.  相似文献   

8.
9.
Dantrolene reduces the elevated myoplasmic Ca(2+) generated during malignant hyperthermia, a pharmacogenetic crisis triggered by volatile anesthetics. Although specific binding of dantrolene to the type 1 ryanodine receptor (RyR1), the Ca(2+) release channel of skeletal muscle sarcoplasmic reticulum, has been demonstrated, there is little evidence for direct dantrolene inhibition of RyR1 channel function. Recent studies suggest store-operated Ca(2+) entry (SOCE) contributes to skeletal muscle function, but the effect of dantrolene on this pathway has not been examined. Here we show that azumolene, an equipotent dantrolene analog, inhibits a component of SOCE coupled to activation of RyR1 by caffeine and ryanodine, whereas the SOCE component induced by thapsigargin is not affected. Our data suggest that azumolene distinguishes between two mechanisms of cellular signaling to SOCE in skeletal muscle, one that is coupled to and one independent from RyR1.  相似文献   

10.
Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.  相似文献   

11.
The early events mediating herpes simplex virus type 1 (HSV-1) infection include virion attachment to cell surface heparan sulfates and subsequent penetration. Recent evidence has suggested that the high-affinity fibroblast growth factor (FGF) receptor mediates HSV-1 entry. This report presents three lines of experimental evidence showing that the high-affinity FGF receptor is not required for HSV-1 infection. First, rat L6 myoblasts lacking FGF receptors were as susceptible to HSV-1 infection as L6 cells genetically engineered to express the FGF receptor. Second, a soluble FGF receptor fragment that inhibited FGF binding and receptor activation did not inhibit HSV-1 infection. Finally, basic FGF (but not acidic FGF) inhibited HSV-1 infection in L6 cells lacking FGF receptors, presumably by blocking cell surface heparan sulfates also required for HSV-1 infection. These results show that the high-affinity FGF receptor is not required for HSV-1 infection but instead that specific low-affinity basic FGF binding sites are used for HSV-1 infection.  相似文献   

12.
The sequence of 4968 (or 4976 with an insertion) amino acids composing the ryanodine receptor from rabbit cardiac sarcoplasmic reticulum has been deduced by cloning and sequencing the cDNA. This protein is homologous in amino acid sequence and shares characteristic structural features with the skeletal muscle ryanodine receptor. Xenopus oocytes injected with mRNA derived from the cardiac ryanodine receptor cDNA exhibit Ca2(+)-dependent Cl- current in response to caffeine, which indicates the formation of functional calcium release channels. RNA blot hybridization analysis with a probe specific for the cardiac ryanodine receptor mRNA shows that the stomach and brain contain a hybridizable RNA species with a size similar to that of the cardiac mRNA. This result, in conjunction with cloning and analysis of partial cDNA sequences, suggests that the brain contains a cardiac type of ryanodine receptor mRNA.  相似文献   

13.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-mobilizing nucleotide involved in T cell Ca2+ signaling (Berg, I., Potter, B. V. L., Mayr, G. W., and Guse, A. H. (2000) J. Cell Biol. 150, 581-588). The objective of this study was to analyze whether the first subcellular Ca2+ signals obtained upon NAADP stimulation of T-lymphocytes depend on the functional expression of ryanodine receptors. Using combined microinjection and high resolution confocal calcium imaging, we demonstrate here that subcellular Ca2+ signals, characterized by amplitudes between approximately 30 and 100 nM and diameters of approximately 0.5 microM, preceded global Ca2+ signals. Co-injection of the ryanodine receptor antagonists ruthenium red and ryanodine together with NAADP abolished the effects of NAADP, whereas the D-myo-inositol 1,4,5-trisphosphate antagonist heparin and the Ca2+ entry blocker SKF&96365 were without effect. This pharmacological approach was confirmed by a molecular knock-down approach. Jurkat T cell clones with largely reduced expression of ryanodine receptors did not respond to microinjections of NAADP. Taken together, our data suggest that the Ca2+ release channel sensitive to NAADP in T-lymphocytes is the ryanodine receptor.  相似文献   

14.
The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln(4020) and Lys(4021)) that, when mutated to their RyR3 counterparts (Leu(3873) and Gln(3874)), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca(2+) transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln(4020)-Lys(4021) dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.  相似文献   

15.
Breast carcinoma-derived MCF-7 cells are frequently used in biomedical research. However, few reports exist regarding the characterization of signaling mechanisms in these cancerous cells involved in intracellular Ca2+ dynamics. Consequently, the aim of these experiments was to characterize the ryanodine receptor/Ca2+ release channel (RyR) present in MCF-7 cells. Ryanodine (100 nM), cADPR (5 μM), and caffeine (10 mM) promoted cytoplasmic Ca2+ mobilization; in contrast, ryanodine at inhibitory concentration (100 μM) decreased the basal Ca2+ level. Fluorescent probes demonstrated that RyR is located mainly in endomembranes. Some degree of co-localization with inositol trisphosphate receptor (IP3R) was observed, whereas coincidence with thapsigargin-sensitive Ca2+-ATPase (SERCA) was more limited. Molecular cloning resulted in the detection exclusively of RyR isoform 1. For the first time, it is shown that MCF-7 cells express functional RyR.  相似文献   

16.
Mice carrying a targeted disruption of BmprIB were generated by homologous recombination in embryonic stem cells. BmprIB(-/-) mice are viable and, in spite of the widespread expression of BMPRIB throughout the developing skeleton, exhibit defects that are largely restricted to the appendicular skeleton. Using molecular markers, we show that the initial formation of the digital rays occurs normally in null mutants, but proliferation of prechondrogenic cells and chondrocyte differentiation in the phalangeal region are markedly reduced. Our results suggest that BMPRIB-mediated signaling is required for cell proliferation after commitment to the chondrogenic lineage. Analyses of BmprIB and Gdf5 single mutants, as well as BmprIB; Gdf5 double mutants suggests that GDF5 is a ligand for BMPRIB in vivo. BmprIB; Bmp7 double mutants were constructed in order to examine whether BMPRIB has overlapping functions with other type I BMP receptors. BmprIB; Bmp7 double mutants exhibit severe appendicular skeletal defects, suggesting that BMPRIB and BMP7 act in distinct, but overlapping pathways. These results also demonstrate that in the absence of BMPRIB, BMP7 plays an essential role in appendicular skeletal development. Therefore, rather than having a unique role, BMPRIB has broadly overlapping functions with other BMP receptors during skeletal development.  相似文献   

17.
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.  相似文献   

18.
To identify domains of the ryanodine receptor (RyR1) that are functionally relevant for excitation-contraction (EC) coupling in vivo, we have studied the ability of RyR1/RyR3 chimera to rescue skeletal EC coupling in dyspedic myotubes. In this work we show that chimeric receptors containing amino acids 1-1,680 of RyR1 were able to render depolarization-induced Ca2+ release to RyR3. Within this region, residues 1,272-1,455, containing divergent domain D2 of RyR1, proved to be a critical element because the absence of this region selectively abolished depolarization-evoked Ca2+ transients without affecting chemically induced activation. Although the D2 domain by itself failed to restore skeletal EC coupling to RyR3, the addition of the D2 region resulted in a dramatic enhancement of EC coupling restored by an RyR3 chimera containing amino acids 1,681-3,770 of RyR1. These results suggest that although the D2 domain of RyR1 plays a key role during EC coupling, additional region(s) from the N-terminal end of RyR1 as well as previously identified regions of the central portion of the receptor are needed in order to allow normal EC coupling.  相似文献   

19.
GABAA receptor channels mediate postsynaptic inhibition. The functional diversity of these receptors rests on differences in subunit composition and on a large repertoire of subunits. Subunit expression patterns in the brain have been found to predict in vivo compositions of GABAA receptors. In addition, molecular determinants underlying the differential binding properties of allosteric ligands to receptor subtypes have been identified.  相似文献   

20.
Store-operated Ca(2+) entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca(2+) sensors with calcium release-activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20-amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号