首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that somatic mutations arising during animal growth and ageing contribute to the development of neurodegenerative and other animal diseases. For plants, several studies showed that small-scale somatic DNA mutations accumulated during Arabidopsis life cycle. However, there is a lack of data on the influence of environmental stresses on somatic DNA mutagenesis in plants. In this study, we analyzed the effects of ultraviolet C (UV-C) irradiation, high soil salinity, and cadmium (CdI3) stresses on the level of small-scale somatic DNA mutations in Arabidopsis thaliana. The number of DNA mutations was examined in the Actin2 3′UTR (Actin-U1), ITS1-5.8rRNA-ITS2 (ITS), and ribulose-1,5-biphosphate carboxylase/oxygenase (rbcL) DNA regions. We found that somatic mutation levels considerably increased in CdI3-treated Arabidopsis plants, while the mutation levels declined in the UV-C- and NaCl-treated A. thaliana. Cadmium is a mutagen that is known to inhibit DNA repair processes. The detected stress-induced alterations in somatic DNA mutation levels were accompanied by markedly increased expression of base excision repair genes (AtARP, AtDME, AtDML2, AtDML3, AtMBD4, AtROS, AtUNG, and AtZDP), nucleotide excision repair genes (AtDDB1a, AtRad4, and AtRad23a), mismatch repair genes (AtMSH2, AtMSH3, and AtMSH7), and photoreactivation genes (AtUVR2, AtUVR3). Thus, the results demonstrated that UV-C, high soil salinity, and cadmium stresses influence both the level of DNA mutations and expression of DNA repair genes. Salt- and UV-induced activation of DNA repair genes could contribute to the stress-induced decrease in somatic mutation level.  相似文献   

2.
Deinococcus radiodurans has attracted a great interest in the past decades due to its extraordinary resistance to ionizing radiation and highly efficient DNA repair system. Recent studies indicated that pprM is a putative pleiotropic gene in D. radiodurans and plays an important role in radioresistance and antioxidation, but its underlying mechanisms are poorly elucidated. In this study, pprM mutation was generated to investigate resistance to desiccation and oxidative stress. The result showed that the survival of pprM mutant under desiccation was markedly retarded compared to the wild strain from day 7–28. Furthermore, knockout of pprM increases the intercellular accumulation of ROS and the sensibility to H2O2 stress in the bacterial growth inhibition assay. The absorbance spectrum experiment for detecting the carotenoid showed that deinoxanthin, a carotenoid that peculiarly exists in Deinococcus, was reduced in the pprM mutant in the pprM mutant. Quantitative real time PCR showed decreased expression of three genes viz. CrtI (DR0861, 50%),CrtB (DR0862, 40%) and CrtO (DR0093, 50%), which are involved in deinoxanthin synthesis, and of Dps (DNA protection during starving) gene (DRB0092) relevant to ion combining and DNA protection in cells. Our results suggest that pprM may affect antioxidative ability of D. radiodurans by regulating the synthesis of deinoxanthin and the concentration of metal ions. This may provide new clues for the treatment of antioxidants.  相似文献   

3.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

4.
5.
Identification of the fungus Fusarium oxysporum f. sp. pisi (Fop), the causal organism of wilt disease of pea, is a time consuming and arduous task. Diagnosis of Fop by traditional means requires more than 2 months and involves two steps, identification of species using morphological characters and formae specialispisi’ using pathogenicity assays. The ambiguous morphological differences between F. solani and F. oxysporum further complicate the diagnosis of F. oxysporum. A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) based method was developed to detect Fop from India. A PCR–RFLP marker, HPACAPS1380, generated after restriction of 28S rDNA region with enzyme MvaI, detected accurately the Fop among several other fungi with detection sensitivity of 5 fg of Fop genomic DNA. In a mixture of Fop and pea DNA, the sensitivity was 500 pg of Fop DNA in 50 ng of pea DNA. The assay was further refined to detect the Fop from infected tissues and infested soil. The current assay can detect Fop from culture, plant tissues and soil in a considerably shorter period of time compared to traditional methods.  相似文献   

6.
A novel yellow pigmented, Gram-positive, aerobic and heavy metal biosorptive bacterium designated SYP-B2667T was isolated from rhizosphere soil of Epilobium hirsutum L. in Tongren, Guizhou province, China. Based on 16S rRNA gene sequence analyses, it was shown that strain SYP-B2667T represents a novel species in the genus Leucobacter, with Leucobacter chromiireducens subsp. solipictus JCM 15573T as a close phylogenetic neighbour (sequence similarity of 98.2%). Chemotaxonomic characteristics also supported the affiliation to the genus Leucobacter. Strain SYP-B2667T was determined to have a DNA G+C content of 66.6 mol%; 2,4-diaminobutyric acid in the cell wall peptidoglycan amino acids; MK-11 as predominant menaquinone; an abundance of anteiso-C15:0 and anteiso-C17:0 fatty acids; and polar lipids including diphosphatidylglycerol, phosphatidylglycerol, glycolipids and unidentified phospholipids. The DNA–DNA hybridization value between strain SYP-B2667T and L. chromiireducens subsp. solipictus JCM 15573T was 19.7?±?2.8%. Based on these phylogenetic and phenotypic results, it can be concluded that strain SYP-B2667T represents a novel species, for which the name Leucobacter epilobiisoli sp. nov. is proposed. The type strain is SYP-B2667T (=DSM 105145T=CPCC 204976T). This strain can tolerate and adsorb five heavy metals and so may have potential to facilitate heavy metal removal and bioremediation.  相似文献   

7.
Variability of microsatellite DNA loci Gmo3, Gmo34, and Gmo35 is studied in samples of Pacific cod Gadus macrocephalus and Atlantic cod G. morhua. The results show high values of identity of the samples within the North Pacific basin (0.9766–0.9924) and within the Northeast Atlantic basin (0.9580). Based on the pairwise assessment of genetic differentiation, the F ST values are significantly different in all variants between the samples of Pacific and Atlantic cod (F ST = 0.5235–0.6719, p < 0.001). Within the basins, the significant differences in the frequencies of main alleles are revealed in the loci Gmo3 and Gmo34 for the samples from the Pacific and Atlantic oceans, respectively.  相似文献   

8.
Aflatoxins are toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus and cause toxin contamination in food chain worldwide. Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu. Koji mold species are generally perceived of as being nontoxigenic and are generally recognized as safe (GRAS). Fungal isolates were collected from a California orchard and a few were initially identified to be A. sojae using β-tubulin gene sequences blasted against NCBI data base. These new isolates all produced aflatoxins B1, B2, G1, and G2 and were named as Pistachio Winter Experiment (PWE) strains. Thus, it is very important to further characterize these strains for food safety purposes. The full length of aflR gene of these new isolates was sequenced. Comparison of aflR DNA sequences of PWE, A. parasiticus and A. sojae, showed that the aflatoxigenic PWE strains had the six base insertion (CTCATG) similar to domesticated A. sojae, but a pre-termination codon TGA at nucleotide positions 1153–1155 was absent due to a nucleotide codon change from T to C. Colony morphology and scanning microscopic imaging of spore surfaces showed similarity of PWE strains to both A. parasiticus and A. sojae. Concordance analysis of multi locus DNA sequences indicated that PWE strains were closely linked between A. parasiticus and A. sojae. The finding documented the first report that such unique strains have been found in North America and in the world.  相似文献   

9.
Thermophilic or hyperthermophilic SODs (superoxide dismutase) usually offer substantial biotechnological advantages over mesophilic SODs. Previously a 244-amino acid N-terminal domain (NTD) from a heatresistant SOD of Geobacillus thermodenitrificans NG80-2 was discovered and demonstrated to be able to confer thermostability to homologous mesophilic SODs, which revealed a new type of heat resistance mechanism. To further improve the heat resistance and stress tolerance of thermophilic cambialistic superoxide dismutase (Fe/Mn- SOD Ap ) from Aeropyrum pernix K1 through metal incorporation and fusion with the newly found peptide NTD for broadening its industrial application, the wildtype SOD Ap and NTD-fused ntdSOD Ap were expressed in E. coli BL21 and incorporated with metal cofactors by two ways. Recombinant fusion SOD obtained by in vitro reconstitution (Mn-rec ntdSOD Ap ) exhibited improved optimum temperature at 70°C and dramatically enhanced thermostability especially at 110°C with enhanced pH stability from 4 to 10 and higher tolerance for denaturants and organic media than Mn-rec SOD Ap . To the best of our knowledge, Mn-rec ntdSOD Ap could be the most heat resistant SOD. In addition, metal incorporation of SOD Ap and ntdSOD Ap via in vivo modification have been developed and proved to be more practical for industrial use. These results indicate that fusion with NTD along with metal incorporation can generate superimposed effect and be applied to enhance the stability of cambialistic thermophilic SODs, thus providing a universal and convenient bioengineering method for generating extremely stable SODs.  相似文献   

10.
A Gram staining negative, rod-shaped, aerobic bacterial strain J5-3T with a single polar flagellum was isolated from coking wastewater collected from Shaoguan, Guangdong, China. It was motile and capable of optimal growth at pH 6–8, 30 °C, and 0–2 % (w/v) NaCl. Its predominant fatty acids were 11-methyl C18:1 ω7c (29.2 %), C16:0 (20.6 %), C19:0 cyclo ω8c (18.2 %), C18:0 (11.0 %), and C18:1 ω7c/C18:1 ω6c (10.9 %) when grown on trypticase soy agar. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids (GL1, GL2), and two unknown phospholipid (PL1, PL2). The predominant ubiquinone was Q-10, and the genome DNA G+C content was 61.7 mol %. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain J5-3T belonged to the family Hyphomicrobiaceae in Alphaproteobacteria. It shared the 16S rRNA gene sequence similarities of 93.8–96.1 % with the genus Devosia, 94.5–94.8 % with the genus Pelagibacterium, and <92.0 % with all the other type strains in family Hyphomicrobiaceae. It can be distinguished from the closest phylogenetic neighbors based on several phenotypic and genotypic features, including α-galactosidase activity, tetracycline susceptibility, major fatty acid composition, polar lipid profile, DNA gyrase B subunit (gyrB) gene sequence, and random-amplified polymorphic DNA profile. Therefore, we consider strain J5-3T to represent a novel species of a novel genus within the family Hyphomicrobiaceae, for which the name Paradevosia shaoguanensis gen. nov., sp. nov. is proposed. The type strain of Paradevosia shaoguanensis is J5-3T (=CGMCC 1.12430T =LMG 27409T).  相似文献   

11.
The uplift of mountains and climatic oscillations are important for understanding of the demographic history and genetic structure of species. We investigated the biogeographic history of the boreal tree species Ulmus lamellosa (Ulmaceae) in China, by using a combined phylogeographic and paleodistribution modeling approach. In this study, 14 populations of endangered U. lamellosa were analyzed by using chloroplast DNA (cpDNA) sequences. A high level of genetic differentiation (Φ ST = 86.22%) among populations with a significant phylogeographic pattern (N ST > G ST, P < 0.05) was found in U. lamellosa. Ten haplotypes were detected by combining chloroplast DNA data, and haplotype 3 (H3) was found to be common and widespread. The intraspecific divergence of all U. lamellosa cpDNA haplotypes (9.27 Ma; 95% HPD 5.17–13.33 Ma) most probably began in the late Miocene. The pairwise difference among haplotypes and neutrality tests (Tajima’s D and Fu’s Fs statistic) indicated that populations of U. lamellosa, except group I, have not experienced recent sudden expansions. Multiple refuge areas were identified across the entire distribution ranges of U. lamellosa. The low level of gene flow (Nm = 0.14) among populations may have resulted from isolation resulting from distance and complex topography during climatic oscillations; this isolation was probably the major process that shaped the present distribution of haplotypes. These results support the hypothesis that U. lamellosa persisted in situ during glaciations and occupied multiple localized glacial refugia, contrary to the hypotheses of large-scale range contraction and long-distance southward migration.  相似文献   

12.
Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (<?97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA–DNA relatedness with F. pedocola UCM-R36T (43.23?±?4.1%) and F. humicola UCM-46T (29.17?±?3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA–DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T?=?KCTC 62315 T?=?CCTCC AB 2017243T) is proposed.  相似文献   

13.
14.
Comparing the ratio of effective number of breeders (N b ) to adult population size (N) among closely related coexisting species can provide insights into the role of life history on N b /N ratios and inform conservation programs towards limiting the loss of evolutionary potential in natural populations. We estimated N b and N in two coexisting salmonid fishes (Brook trout and Atlantic salmon) for 3–4 consecutive years in two small, adjacent streams in Newfoundland, Canada, using mark-recapture (N), linkage disequilibrium (N b(LD)), and sibship frequency approaches (N b(Sib) ). We found that N b /N ratios were about 20-fold greater in Atlantic salmon than in brook trout (mean 0.20, range 0.06–0.56 vs. mean 0.02, range 0.01–0.05, respectively). This difference was consistent across N b estimators. In addition, we found that removing migrants reduced N b : the strength of the effect was weak for N b(LD) and much stronger for N b(Sib). Our results highlight the importance of subtle ecological differences and gene flow in shaping N b /N. They also provide some evidence that the linkage between demographic and evolutionary processes varies between closely related taxa and suggest that a more complete understanding of the N b /N range across various species is an important component of conservation genetics and management.  相似文献   

15.
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39T, were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2T (97.41–97.68%), Limnobacter litoralis KP1-19T (95.55–95.76%), and various genera belonging to the class Betaproteobacteria (90.34–93.34%). DNA-DNA hybridization showed 79.3–83.9% similarity between the genomic DNA of UCM-39T, UCM-30, and UCM-33, while the sequence similarity between UCM-39T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C16:1 ω7c and/or C16:1 ω6c) and 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39T (=KACC 18574T =NBRC 111650T).  相似文献   

16.
About twenty genes participating in checkpoint control are known in yeast Saccharomyces cerevisiae. The involvement of SRM genes in the cell cycle arrest under the action of DNA damaging agents was studied in this work. These genes were earlier defined as genes affecting genetic stability and radiosensitivity. It was shown that mutations srm5/cdc28-srm, srm8/net1-srm, and srm12/hfi1-srm fail the cell cycle arrest in the presence of DNA damage and influence the checkpoint arrest in G0/S (srm5, srm8), G1/S (srm5, srm8, srm12), S (srm5, srm12), and G2/M (srm5). It seems likely that genes SRM5/CDC28, SRM12/HFI1/ADA1, and SRM8/NET1 are involved in a cell response to DNA damage, and in checkpoint regulation in particular.  相似文献   

17.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

18.
A marine bacterial strain, F72T, was isolated from a solitary scleractinian coral, collected in Yap seamounts in the Pacific Ocean. Strain F72T is a Gram-negative, light-yellow-pigmented, motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain F72T is related to the genus Novosphingobium and has high 16S rRNA gene sequence similarities with the type strains of Novosphingobium pentaromativorans US6-1T (97.7 %), Novosphingobium panipatense SM16T (97.6 %), Novosphingobium mathurense SM117T (97.2 %) and Novosphingobium barchaimii LL02T (97.1 %). Ubiquinone Q-10 was detected as the dominant quinone. The predominant cellular fatty acids were C18:1ω7c and C17:1ω6c. The genomic DNA G+C content of strain F72T was 63.4 mol %. The polar lipids profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine, sphingoglycolipid and one uncharacterized lipid. Strain F72T shared DNA relatedness of 25 % with N. pentaromativorans JCM 12182T, 31 % with N. panipatense DSM 22890T, 21 % with N. mathurense DSM 23374T and 26 % with N. barchaimii DSM 25411T. Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that the strain F72T is a representative of a novel species of the genus Novosphingobium, for which we propose the name Novosphingobium profundi sp. nov. (type strain F72T = KACC 18566T = CGMCC 1.15390T).  相似文献   

19.
A Gram-stain negative, rod-shaped, non-motile, strictly aerobic bacterium HK-28T was isolated from a mangrove sediment sample in Haikou city, Hainan Province, China. Strain HK-28T was able to grow at 10–45 °C (optimum 25–30 °C), pH 5.0–8.5 (optimum 6.0–7.0) and 0.5–12.0% (w/v) NaCl (optimum 1.0–3.0%, w/v). The major cellular fatty acids were C16:0, Summed Feature 8 (C18:1 ω7c and/or C18:1 ω6c), Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c), C17:0, C12:0 3-OH and C17:1ω8c. Ubiquinone-8 (Q-8) was the predominant respiratory quinone. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, two unidentified glycolipid, an unidentified glycophospholipid, an unidentified aminolipid and an unidentified lipid. The DNA G+C content was 50.2 mol%. Accoroding to 16S rRNA gene sequence similarities, strain HK-28T shared 97.1 and 96.7% sequence similarities to the validly named species Gallaecimonas xiamenensis MCCC 1A01354T and Gallaecimonas pentaromativorans MCCC 1A06435T, respectively, and shared lower sequence similarities (<?92.0%) to all other genera. Phylogenetic analysis showed strain HK-28T was clustered with G. pentaromativorans MCCC 1A06435T and G. xiamenensis MCCC 1A01354T. Strain HK-28T showed low DNA–DNA relatedness with G. xiamenensis MCCC 1A01354T (28.3?±?1.5%) and G. pentaromativorans MCCC 1A06435T (25.2?±?2.4%). On the basis of phenotypic, chemotaxonomic and genotypic characteristics, strain HK-28T is considered to represent a novel species in the genus Gallaecimonas, for which the name Gallaecimonas mangrovi sp. nov. is proposed. The type strain is HK-28T (=?KCTC 62177T?=?MCCC 1K03441).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号