首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been overlooked that the change of hardness, η, upon bonding is intimately connected to thermochemical cycles, which determine whether hardness is increased according to Pearson’s “maximum hardness principle” (MHP) or equalized, as expected by Datta’s “hardness equalization principle” (HEP). So far the performances of these likely incompatible “structural principles” have not been compared. Computational validations have been inconclusive because the hardness values and even their qualitative trends change drastically and unsystematically at different levels of theory. Here I elucidate the physical basis of both rules, and shed new light on them from an elementary experimental source. The difference, Δη = η mol – <η at>, of the molecular hardness, η mol, and the averaged atomic hardness, <η at>, is determined by thermochemical cycles involving the bond dissociation energies D of the molecule, D + of its cation, and D ? of its anion. Whether the hardness is increased, equalized or even reduced is strongly influenced by ΔD = 2D – D +  ? D ?. Quantitative expressions for Δη are obtained, and the principles are tested on 90 molecules and the association reactions forming them. The Wigner-Witmer symmetry constraints on bonding require the valence state (VS) hardness, η VS, instead of the conventional ground state (GS) hardness, η GS. Many intriguingly “unpredictable” failures and systematic shortcomings of said “principles” are understood and overcome for the first time, including failures involving exotic and/or challenging molecules, such as Be2, B2, O3, and transition metal compounds. New linear relationships are discovered between the MHP hardness increase Δη VS and the intrinsic bond dissociation energy D i . For bond formations, MHP and HEP are not compatible, and HEP does not qualify as an ordering rule.  相似文献   

2.
Leishmaniasis, a neglected tropical disease caused by protozoans of the genus Leishmania, kills around 20–30 thousand people in Africa, Asia, and Latin America annually and, despite its potential lethality, it can be treated and eventually cured. However, the current treatments are limited owing to severe side effects and resistance development by some Leishmania. These factors make it urgent to develop new leishmanicidal drugs. In the present study, three ruthenium(II) organometallic complexes containing as ligands the commercially available anti-inflammatories diclofenac (dic), ibuprofen (ibu), and naproxen (nap) were synthesized, characterized, and subjected to in vitro leishmanicidal activity. The in vitro cytotoxicity assays against Leishmania (L.) amazonensis and Leishmania (L.) infantum promastigotes have shown that complexes [RuCl(dic)(η6-p-cymene)] (1) and [RuCl(nap)(η6-p-cymene)] (3) were active against both Leishmania species. Complex [RuCl(ibu)(η6-p-cymene)] (2) has exhibited no activity. The IC50 values for the two active complexes were respectively 7.42 and 23.55 μM, for L. (L.) amazonensis, and 8.57 and 42.25 μM, for L. (L.) infantum. Based on the toxicological results and computational analysis, we proposed a correlation between the complexes and their activity. Our results suggest both complexation to ruthenium(II) and ligands structure are key elements to leishmanicidal activity.  相似文献   

3.
4.
Group A saponins are thought to be the cause of bitter and astringent tastes in processed foods of soybean (Glycine max), and the elimination of group A saponins is an important breeding objective. The group A saponins include two main Aa and Ab types, controlled by codominant alleles at the Sg-1 locus that is one of several key loci responsible for saponin biosynthesis in the subgenus Glycine soja. However, A0 mutant lacking group A saponin is a useful gene resource for soybean quality breeding. Here, eight Chinese wild soybean A0 accessions were sequenced to reveal the mutational mechanisms, and the results showed that these mutants were caused by at least three kinds of mechanisms involving four allelic variants (sg-10-b2, sg-10-b3, Sg-1b-0, and Sg-1b-01). The sg-10-b2 had two nucleotide deletions at positions +?72 and +?73 involving in the 24th and 25th amino acids. The sg-10-b3 contained a stop codon (TGA) at the 254th residue. The Sg-1b-0 and Sg-1b-01 were two novel A0-type mutants, which likely carried normal structural alleles, and nevertheless did not encode group A saponin due to unknown mutations beyond the normal coding regions. In addition, to reveal the structural features, allelic polymorphism, and mechanisms of the abiogenetic absence of group A (i.e., A0 phenotype), nucleotide sequence analysis was performed for the Sg-1 locus in wild soybean (Glycine soja). The results showed that Sg-1 alleles had a lower conservatism in the coding region; as high as 18 sequences were found in Chinese wild soybeans in addition to the Sg-1a (Aa) and Sg-1b (Ab) alleles. Sg-1a and Sg-1b alleles were characterized by eight synonymous codons and nine amino acid substitutions. Two evolutionarily transitional allelic sequences (Sg-1a7 and Sg-1b2) from Sg-1a toward Sg-1b were detected.  相似文献   

5.
The prion-like determinant [ISP +] manifests itself as an antisuppressor of certain sup35 mutations. To establish that [ISP +] is indeed a new yeast prion, it is necessary to identify the gene that codes for the protein whose prion form is [ISP +]. Analysis of the transformants obtained by transformation of an [ISP +] strain with an insertion gene library revealed three genes controlling the [ISP +] maintenance: UPF1, UPF2, and SFP1. SFP1 codes for a potentially prionogenic protein, which is enriched in Asn and Gln residues, and is thereby the most likely candidate for the [ISP +] structural gene. UPF1 and UPF2 code for components of nonsense-mediated mRNA decay. The [ISP +] elimination caused by UPF1 and UPF2 inactivation was reversible, and Upf1p and Upf2p were not functionally related to phosphatase Ppz1p, which influences the [ISP +] manifestation. Possible mechanisms sustaining the influence of UPF1 and UPF2 on [ISP +] maintenance are discussed.  相似文献   

6.

Objective

To investigate the biocatalytic potential of Colletotrichum acutatum and Colletotrichum nymphaeae for monoterpene biotransformation.

Results

C. acutatum and C. nymphaeae used limonene, α-pinene, β-pinene, farnesene, citronellol, linalool, geraniol, perillyl alcohol, and carveol as sole carbon and energy sources. Both species biotransformed limonene and linalool, accumulating limonene-1,2-diol and linalool oxides, respectively. α-Pinene was only biotransformed by C. nymphaeae producing campholenic aldehyde, pinanone and verbenone. The biotransformation of limonene by C. nymphaeae yielded 3.34–4.01 g limonene-1,2-diol l?1, depending on the substrate (R-(+)-limonene, S-(?)-limonene or citrus terpene (an agro-industrial by-product). This is among the highest concentrations already reported for this product.

Conclusions

This is the first report on the biotransformation of these terpenes by Colletotrichum spp. and the biotransformation of limonene to limonene-1,2-diol possibly involves enzymes similar to those found in Grosmannia clavigera.
  相似文献   

7.
Check of Gene Number during the Process of rDNA Magnification   总被引:1,自引:0,他引:1  
THE multiple sequences of rDNA (DNA complementary to ribosomal RNA) of the Drosophila genome are localized at the bobbed locus, located in the X chromosome, position 66 and in the short arm of the Y chromosome1,2. Wild bobbed (bb+) is that locus which, without a partner, gives rise to a normal phenotype. That locus which in similar conditions is incapable of giving rise to a normal phenotype is called a bobbed mutation (bb) and contains fewer genes for rRNA. The number of genes for rRNA in different individuals can vary considerably. One mechanism for rDNA variation is unequal crossing over3. Another mechanism, described by Tartof4, becomes apparent when individual flies, carrying only one bobbed locus, are constructed and only if such a locus is on the X chromosome; that is, if one constructs Xbb+/O males (and also Xbb/O males) or Xbb+/XNO- females. Such individuals show a higher rDNA content than expected from the analysis of the same locus in Xbb+/Xbb+ females or in Xbb+/Ybb+ males. The increase of rDNA in this case is not inheritable4.  相似文献   

8.
The role of 4.1 or 8.2 μM meta-topolin (mT) on shoot multiplication, rooting and ex vitro acclimatization of micropropagated Corylus colurna L., a promising non-suckering rootstock for hazelnut (Corylus avellana L.), was examined in comparison to N6-benzyladenine (BA), the most used cytokinin in tissue culture of Corylus spp. The influence of 8.2 μM mT and BA on photosynthetic pigments content and antioxidant enzymes activity, catalase (CAT) and guaiacol peroxidase (POD), in regenerated shoots, and on the preparation of the rootstock for micrografting was also evaluated. The highest shoot multiplication was recorded on medium containing 8.2 μM mT and an overall positive effect of mT on growth and quality of micropropagated shoots was found. The highest chlorophyll a content (1.236 mg g?1 fresh weight, FW) and chlorophyll a/b ratio (2.48), and the lowest total carotenoids content (0.292 mg g?1 FW) and CAT activity (25.8 μmol min?1 mg?1 protein) were detected after 8.2 μM mT application, while no significant differences were found in chlorophyll b content and POD activity between the two cytokinins. The best rhizogenesis response (98% for 4.1 μM and 100% for 8.2 μM mT) and ex vitro acclimatization competence (higher than 78%) were exhibited from shoots multiplied on mT. Furthermore, the multiplication of rootstock on mT allowed obtaining the highest (70%) response of successful micrografting. The present findings provide the first evidence of the successful applicability of mT in C. colurna tissue culture and development of micrografted plantlets.  相似文献   

9.
2-(4H-1,3-Benzoxazin-4-on-2-yl)-4,5,6-trichloro-1,3-tropolone, structural properties of which were studied using 1H NMR, IR-spectroscopy, mass spectrometry, and quantum chemistry has been obtained for the first time using an acid-catalyzed condensation reaction of 3,4,5,6-tetrachloro-1,2-benzoquinone with 2-methyl-4H-3,1-benzoxazin-4-one. It has been shown that the new tropolone possesses antibacterial activity against hospital-acquired strains of gram-negative (Escherichia coli, Salmonella enterica sv. Enteritidis, Acinetobacter baumannii, and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. The obtained substance is suggested for development of a new antibacterial drug.  相似文献   

10.
Phytophthora species cause enormous economic loss every year worldwide. Xenocoumacin 1 (Xcn1), isolated from the bacterium Xenorhabdus nematophilus, is a broad-spectrum antibiotic against agricultural pathogens, especially Phytophthora. To understand the inhibitory mode of Xcn1 toward Phytophthora pathogens, we determined the inhibitory effects of Xcn1 on Phytophthora capsici both in vitro and in vivo. In vitro, Xcn1 inhibited different stages in the life cycle of P. capsici, including sporangium formation, zoospore germination, and mycelial growth, with 50% effective concentration (EC50) values of 0.037, 0.81, and 2.44 μg ml?1, respectively. Xcn1 also reduced zoospore motility. In vivo, Xcn1 efficiently controlled the Phytophthora blight of pepper with a disease reduction of 99% at a concentration of 5 μg ml?1 assessed on the third day after incubation of wound stem plants. In addition, Xcn1-treated P. capsici mycelia exhibited increased mycelial branch spacing, evident plasmolysis, and leakage of intracellular components. In conclusion, in the presence of Xcn1, several stages in the life cycle of P. capsici were inhibited, and the hyphae exhibited obvious morphological changes.  相似文献   

11.
The present study was designed to synthesize the bioactive molecule 2,2-bis(2,4-dinitrophenyl)-2-(phosphonatomethylamino)acetate (1), having excellent applications in the field of plant protection as a herbicide. Structure of newly synthesized molecule 1 was confirmed by using the elemental analysis, mass spectrometric, NMR, UV-visible, and FTIR spectroscopic techniques. To obtain better structural insights of molecule 1, 3D molecular modeling was performed using the GAMESS programme. Microbial activities of 1 were checked against the pathogenic strains Aspergillus fumigatus (NCIM 902) and Salmonella typhimurium (NCIM 2501). Molecule 1 has shown excellent activities against fungal strain A. fumigates (35 μg/l) and bacterial strain S. typhimurium (25 μg/l). To check the medicinal significance of molecule 1, interactions with bovine serum albumin (BSA) protein were checked. The calculated value of binding constant of molecule 1–BSA complex was 1.4 × 106 M?1, which were similar to most effective drugs like salicylic acid. More significantly, as compared to herbicide glyphosate, molecule 1 has exhibited excellent herbicidal activities, in pre- and post-experiments on three weeds; barnyard grass (Echinochloa Crus), red spranglitop (Leptochloa filiformis), and yellow nuts (Cyperus Esculenfus). Further, effects of molecule 1 on plant growth-promoting rhizobacterial (PGPR) strains were checked. More interestingly, as compared to glyphosate, molecule 1 has shown least adverse effects on soil PGPR strains including the Rhizobium leguminosarum (NCIM 2749), Pseudomonas fluorescens (NCIM 5096), and Pseudomonas putida (NCIM 2847).  相似文献   

12.
Single cells of five different Microcystis species (M. ichthyoblabe, M. viridis, M. flos-aquae, M. wesenbergii, and M. aeruginosa) were batch-cultured at different temperatures and light intensities: (a) 25 °C and 50 μmol photons m?2 s?1 (control culture); (b) 25 °C and 10 μmol photons m?2 s?1; and (c) 15 °C and 50 μmol photons m?2 s?1. The extracellular polysaccharide content was significantly higher in treatments b and c than in the control treatment. All Microcystis species existed as single cells under the control treatment but formed colonies in treatments b and c. All of the colonies were irregular with indistinct margins. M. ichthyoblabe, M. viridis, M. flos-aquae, and M. wesenbergii formed colonies with similar morphologies and their cells were loosely aggregated. In contrast, M. aeruginosa formed denser colonies with no distinct holes. The colony morphologies differed from the classic morphology of M. ichthyoblabe field-grown colonies but resembled that of small colonies found in Lake Taihu (Yangtze Delta Plain, China) during early spring. This indicates that field- and laboratory-grown colonies are governed by similar formation processes. We suggest that in laboratory and field environments, M. ichthyoblabe (or M. flos-aquae) colonies are representative of small colonies formed from single Microcystis cells, whereas the morphology of older colonies evolves to resemble M. wesenbergii and M. aeruginosa colonies.  相似文献   

13.
Normal and Mutant Glycine Transfer RNAs   总被引:21,自引:0,他引:21  
THE glycine-specific tRNAs of E. coli can be grouped into three subspecies which are separated by chromatography on benzoylated DEAE cellulose (BDC): tRNAGly1 (GGG), tRNAGly2 (GGA/G) and tRNAGly3 (GGU/C)1,2. The tRNAGly1 and tRNAGly2 are specified by the genes, glyU and glyT, respectively, which have been located at 55 and 77 minutes on the E. coli chromosome. Suppressors of tryptophan A gene (trpA) missense mutations and partial diploid strains have been used extensively to characterize the glycine tRNA structural genes (Table 1)1–3. A common property of these suppressor mutations is that the altered tRNAGly is no longer aminoacylated at the normal rate by the glycyl tRNA synthetase (GRS). When ordinary loading conditions are used virtually none of the suppressor tRNA species are amino-acylated. These studies have shown that single gene copies are normally present at the glyT and glyU loci.  相似文献   

14.
The purpose of this study was to investigate the short-term effects of maize (Zea mays)-fallow rotation, residue management, and soil water on carbon mineralization in a tropical cropping system in Ghana. After 15 months of the trial, maize–legume rotation treatments had significantly (P?C 0 (μg CO2–C g?1) than maize–elephant grass (Pennisetum purpureum) rotations. The C 0 for maize–grass rotation treatments was significantly related to the biomass input (r?=?0.95; P?=?0.05), but that for the maize–legume rotation was not. The soil carbon mineralization rate constant, k (per day), was also significantly related to the rotation treatments (P?k values for maize–grass and maize–legume rotation treatments were 0.025 and 0.036 day?1 respectively. The initial carbon mineralization rate, m 0 (μg CO2–C g?1 day ?1), was significantly (P?θ. The m 0 ranged from 3.88 to 18.67 and from 2.30 to 15.35 μg CO2–C g?1 day?1 for maize–legume and maize–grass rotation treatments, respectively, when the soil water varied from 28% to 95% field capacity (FC). A simple soil water content (θ)-based factor, f w, formulated as: \(f_{\text{w}} = \left[ {\frac{{\theta - \theta _{\text{d}} }}{{\theta _{{\text{FC}}} - \theta _{\text{d}} }}} \right]\), where θ d and θ FC were the air-dry and field capacity soil water content, respectively, adequately described the variation of the m 0 with respect to soil water (R 2?=?0.91; RMSE?=?1.6). Such a simple relationship could be useful for SOC modeling under variable soil water conditions.  相似文献   

15.
Two uncharacterized nicotinamide adenine dinucleotide (NADH) oxidases (named as LpNox1, LpNox2) from Lactobacillus pentosus ATCC 8041 were cloned and overexpressed in Escherichia coli BL21 (DE3). The sequence analysis revealed that the two enzymes are water-forming Noxs with 64 % and 52 % identity to LbNox from Lactobacillus brevis DSM 20054. The optimal pH and temperature of the purified LpNox1 and LpNox2 were 7.0 and 8.0 and 35 and 40 °C, respectively, with K M of 99.0 μM (LpNox1) and 27.6 μM (LpNox2), and yielding catalytic efficiency k cat/K M of 1.0 and 0.2 μM?1 s?1, respectively. Heat inactivation studies revealed that the two enzymes are relatively instable. The application of LpNox1 for the regeneration of NAD+ was demonstrated by coupling with a glycerol dehydrogenase-catalyzed oxidation of glycerol to 1,3-dihydroxyacetone. The characteristics of the LpNox1 could prove to be of interest in industrial application such as NAD+ regeneration in dehydrogenase-catalyzed oxidations.  相似文献   

16.
It has been shown that micromycetes Aspergillus ustus 1 and Tolypocladium inflatum k1 secrete proteolytic enzymes that possess high collagenolytic, fibrinolytic, and elastolytic activity. The activity of proteinases hydrolyzing fibrillar proteins, which was determined by the cleavage of azo-collagen, was 122.6 × 10–3EAzc/mL in A. ustus 1 and 69.7 × 10–3EAzc/mL in T. inflatum k1 (EAzc is the amount of azocollagen cleaved in 1 min (μg). The maximum values of activity were observed during submerged cultivation of A. ustus 1 for 4 days and of T. inflatum k1 for 5 days. It has been shown that the maximum of collagenolytic and general proteolytic activity during the cultivation of A. ustus 1 are time-separated, unlike T. inflatum k1, which, presumably, can simplify the procedure for obtaining proteinases active against fibrillar proteins.  相似文献   

17.
Exogenous expression of the gene encoding the pancreatic master regulator PDX1 in cell lines with different degrees of differentiation of pancreatic cancer cells is accompanied by changes in the expression of known master genes involved in cancer progression. In BxPC3PDX+ cells, as compared to BxPC3PDX–, we detected an increased expression of the following genes: NKX6.1 (2 times), NR5A2 (2.5 times), KLF5 (1.8 times), ZEB1 (3 times), and ONECUT1 (1.3 times), as well as a decreased expression of MUC1 and SLUG genes (3 and 2 times, respectively). In PANC1PDX+ cells, as compared to the control PANC1PDX– cells, we detected a decreased expression of ISL1 (2 times) and an increased expressed of KRT8 (2 times) and MUC1 (by 30%). In the high-grade cell lines (including the BxPC3 line studied), the total content of sites containing the marks of active enhancers was higher than that in the low-grade cell lines (PANC1).  相似文献   

18.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

19.
The effects of a bioinsecticide formulation based on extract of Annona squamosa L. (Annonaceae) containing 10,000 mg L?1 of acetogenin annonin as the main active ingredient were investigated against three primary pest species of stored grains in Brazil [maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), Mexican bean weevil Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae: Bruchinae), and cowpea weevil Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae)] by means of residual contact bioassays. In a concentration-dependent manner, the annonin-based commercial bioinsecticide caused significant adult mortality of C. maculatus (LC50 = 6890 μL kg?1), S. zeamais (LC50 = 2781 μL kg?1), and Z. subfasciatus (LC50 = 2120 μL kg?1) after 120 h of residual contact exposure. In addition to acute toxicity, the tested bioinsecticide also promoted a significant reduction of the number of eggs laid by females of C. maculatus (EC50 = 5949.7 μL kg?1) and Z. subfasciatus (EC50 = 552.7 μL kg?1). Moreover, the bioinsecticide significantly reduced the number of emerged insects (F1 generation) of C. maculatus (EC50 = 2763.0 μL kg?1), S. zeamais (EC50 = 1380.8 μL kg?1), and Z. subfasciatus (EC50 = 561.5 μL kg?1). The bioinsecticide also reduced the percentage of damaged grains for the three pest species studied, and its grain-protectant properties are comparable to or superior in efficacy in relation to a diatomaceous earth-based insecticide (Insecto® at 1000 mg kg?1) used as a positive control. Thus, this standardized formulation has promising bioactivity against stored insect species and can be a useful component for IPM of stored grains in Brazil and elsewhere.  相似文献   

20.
Camptothecin (CPT) is mainly produced and extracted from Camptotheca acuminata and Nothapodytes foetida for pharmaceutical use, i.e., the starting material for chemical conversion to the clinical CPT-type drugs. As the third largest plant anticancer drug, the heavy demand on CPT from global market leads to many research efforts to identify new sources for CPT production. Herein we report the isolation and characterization of a CPT-producing endophytic bacterium Paenibacillus polymyxa LY214 from Camptotheca acuminata. A 10.7 μg l?1 of CPT was presented in the fermentation broth of P. polymyxa LY214. Its CPT production decreased sharply when the strain of the 2nd generation of P. polymyxa LY214 was cultured and fermented. However, the CPT production remained relatively constant from 2.8 μg l?1 of the 2nd generation to 0.8 μg l?1 of the 8th generation of P. polymyxa LY214 under optimized fermentation conditions. A 15- to 30-fold increase of CPT yield was observed when the optimized fermentation conditions, together with the addition of putative biosynthetic precursors of CPT and adsorbent resin XAD16, were applied to ferment the strains of the 7th and 8th generation of P. polymyxa LY214. Bioinformatics analysis of the relative species of P. polymyxa LY214 indicates its potential to produce CPT, which will be helpful to decipher the mysteries of CPT biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号