首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although Neurexins, which are cell adhesion molecules localized predominantly to the presynaptic terminals, are known to regulate synapse formation and synaptic transmission, their roles in the regulation of synaptic vesicle release during repetitive nerve stimulation are unknown. Here, we show that nrx mutant synapses exhibit rapid short term synaptic depression upon tetanic nerve stimulation. Moreover, we demonstrate that the intracellular region of NRX is essential for synaptic vesicle release upon tetanic nerve stimulation. Using a yeast two-hybrid screen, we find that the intracellular region of NRX interacts with N-ethylmaleimide-sensitive factor (NSF), an enzyme that mediates soluble NSF attachment protein receptor (SNARE) complex disassembly and plays an important role in synaptic vesicle release. We further map the binding sites of each molecule and demonstrate that the NRX/NSF interaction is critical for both the distribution of NSF at the presynaptic terminals and SNARE complex disassembly. Our results reveal a previously unknown role of NRX in the regulation of short term synaptic depression upon tetanic nerve stimulation and provide new mechanistic insights into the role of NRX in synaptic vesicle release.  相似文献   

2.
近年来,对突触小泡释放神经递质分子机制的研究迅速发展,发现了大量位于神经末梢的蛋白质.它们之间的相互作用与突触小泡释放神经递质相关,特别是位于突触小泡膜上的突触小泡蛋白/突触小泡相关膜蛋白(synaptobrevin/VAMP),位于突触前膜上的syntaxin和突触小体相关蛋白(synaptosome-associated protein of 25 ku),三者聚合形成的可溶性NSF附着蛋白受体(SNARE)核心复合体在突触小泡的胞裂外排、释放递质过程中有重要作用.而一些已知及未知的与SNARE蛋白有相互作用的蛋白质,可通过调节SNARE核心复合体的形成与解离来影响突触小泡的胞裂外排,从而可以调节突触信号传递的效率及强度,在突触可塑性的形成中起重要作用.  相似文献   

3.
SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically ∼10%) were sufficient for a substantial amount of SNARE–SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery.  相似文献   

4.
Paroxysmal dyskinesias (PDs) are a group of episodic movement disorders with marked variability in clinical manifestation and potential association with epilepsy. PRRT2 has been identified as a causative gene for PDs, but the phenotypes and inheritance patterns of PRRT2 mutations need further clarification. In this study, 10 familial and 21 sporadic cases with PDs and PDs‐related phenotypes were collected. Genomic DNA was screened for PRRT2 mutations by direct sequencing. Seven PRRT2 mutations were identified in nine (90.0%) familial cases and in six (28.6%) sporadic cases. Five mutations are novel: two missense mutations (c.647C>G/p.Pro216Arg and c.872C>T/p.Ala291Val) and three truncating mutations (c.117delA/p.Val41TyrfsX49, c.510dupT/p.Leu171SerfsX3 and c.579dupA/p.Glu194ArgfsX6). Autosomal dominant inheritance with incomplete penetrance was observed in most of the familial cases. In the sporadic cases, inheritance was heterogeneous including recessive inheritance with compound heterozygous mutations, inherited mutations with incomplete parental penetrance and de novo mutation. Variant phenotypes associated with PRRT2 mutations, found in 36.0% of the affected cases, included febrile convulsions, epilepsy, infantile non‐convulsive seizures (INCS) and nocturnal convulsions (NC). All patients with INCS or NC, not reported previously, displayed abnormalities on electroencephalogram (EEG). No EEG abnormalities were recorded in patients with classical infantile convulsions and paroxysmal choreoathetosis (ICCA)/paroxysmal kinesigenic dyskinesia (PKD). Our study further confirms that PRRT2 mutations are the most common cause of familial PDs, displaying both dominant and recessive inheritance. Epilepsy may occasionally occur in ICCA/PKD patients with PRRT2 mutations. Variant phenotypes INCS or NC differ from classical ICCA/PKD clinically and electroencephalographically. They have some similarities with, but not identical to epilepsy, possibly represent an overlap between ICCA/PKD and epilepsy .  相似文献   

5.
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.   相似文献   

6.
7.
突触小泡膜蛋白及其在神经递质释放过程中的作用已取得若干研究进展.突触素I、SY蛋白、SO蛋白、SB蛋白、SG蛋白等都是突触小泡膜的重要蛋白质,这些蛋白质在突触小泡的贴靠、膜融合及胞吐作用中起着局部自主性调节作用.  相似文献   

8.
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1 adopts a closed conformation when bound to Munc18-1, preventing binding to synaptobrevin-2 and SNAP-25 to form the ternary SNARE complex. Although it is known that the MUN domain of Munc13-1 catalyzes the transition from the Munc18-1/syntaxin-1 complex to the SNARE complex, the molecular mechanism is unclear. Here, we identified two conserved residues (R151, I155) in the syntaxin-1 linker region as key sites for the MUN domain interaction. This interaction is essential for SNARE complex formation in vitro and synaptic vesicle priming in neuronal cultures. Moreover, this interaction is important for a tripartite Munc18-1/syntaxin-1/MUN complex, in which syntaxin-1 still adopts a closed conformation tightly bound to Munc18-1, whereas the syntaxin-1 linker region changes its conformation, similar to that of the LE mutant of syntaxin-1 when bound to Munc18-1. We suggest that the conformational change of the syntaxin-1 linker region induced by Munc13-1 initiates ternary SNARE complex formation in the neuronal system.  相似文献   

9.
Complexin is an important protein that functions during Ca2+-dependent neurotransmitter release. Substantial evidence supports that complexin performs its role through rapid interaction with SNARE complex with high affinity. However, alpha-SNAP/NSF, which can disassemble the cis-SNARE complex in the presence of MgATP, competes with complexin to bind to SNARE complex. In addition, injection of alpha-SNAP into chromaffin cells enhances the size of the readily releasable pool, and mutation disrupting the ATPase activity of NSF results in the accumulation of SNARE complex. Thus, whether high concentrations of complexin could result in a reverse result is unclear. In this paper, we demonstrate that when stably overexpressed in PC12 cells, high levels of complexin result in the accumulation of SNARE complex. This in turn leads to a reduction in the size of the readily releasable pool of large dense core vesicles. These results suggest that high levels of complexin seem to prevent SNARE complex recycling, presumably by displacing NSF and alpha-SNAP from SNARE complex.  相似文献   

10.
The subcellular localization of glycine transporters one (GLYT1) and two (GLYT2) stably expressed in PC12 cells has been studied. To facilitate visualization, enhanced green fluorescent protein (GFP) was fused to the amino terminus of both glycine transporters. Functional analysis of the GFP-GLYT1 and GFP-GLYT2 stable cell lines demonstrated that they exhibited high affinity for glycine and the characteristic properties of both glycine transporter subtypes. The GFP-coupled transporters were differently distributed throughout the cell. GFP-GLYT1 was mainly localized on the plasma membrane, whereas most of GFP-GLYT2 was present on large dense-core vesicles and endosomes. Both transporters were absent from the synaptic vesicle population in PC12 cells.  相似文献   

11.
Synaptic exocytosis relies on assembly of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins into a parallel four-helix bundle to drive membrane fusion. SNARE assembly occurs by stepwise zippering of the vesicle-associated SNARE (v-SNARE) onto a binary SNARE complex on the target plasma membrane (t-SNARE). Zippering begins with slow N-terminal association followed by rapid C-terminal zippering, which serves as a power stroke to drive membrane fusion. SNARE mutations have been associated with numerous diseases, especially neurological disorders. It remains unclear how these mutations affect SNARE zippering, partly due to difficulties to quantify the energetics and kinetics of SNARE assembly. Here, we used single-molecule optical tweezers to measure the assembly energy and kinetics of SNARE complexes containing single mutations I67T/N in neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25B), which disrupt neurotransmitter release and have been implicated in neurological disorders. We found that both mutations significantly reduced the energy of C-terminal zippering by ~ 10 kBT, but did not affect N-terminal assembly. In addition, we observed that both mutations lead to unfolding of the C-terminal region in the t-SNARE complex. Our findings suggest that both SNAP-25B mutations impair synaptic exocytosis by destabilizing SNARE assembly, rather than stabilizing SNARE assembly as previously proposed. Therefore, our measurements provide insights into the molecular mechanism of the disease caused by SNARE mutations.  相似文献   

12.
Monoclonal antibodies were generated by immunizing mice with chick brain synaptic membranes and screening for immunoprecipitation of solubilized conotoxin GVIA receptors (N-type calcium channels). Antibodies against two synaptic proteins (p35--syntaxin 1 and p58--synaptotagmin) were produced and used to purify and characterize a ternary complex containing N-type channels associated with these two proteins. These results provided the first evidence for a specific interaction between presynaptic calcium channels and SNARE proteins involved in synaptic vesicle docking and calcium-dependent exocytosis. Immunoprecipitation experiments supported the conclusion that syntaxin 1/SNAP-25/VAMP/synaptotagmin I or II complexes associate with N-type, P/Q-type, but not L-type calcium channels from rat brain nerve terminals. Immunofluorescent confocal microscopy at the frog neuromuscular junction was consistent with the co-localization of syntaxin 1, SNAP-25, and calcium channels, all of which are predominantly expressed at active zones of the presynaptic plasma membrane facing post-synaptic folds rich in acetylcholine receptors. The interaction of proteins implicated in calcium-dependent exocytosis with presynaptic calcium channels may locate the sensor(s) that trigger vesicle fusion within a microdomain of calcium entry.  相似文献   

13.
Neurotransmitter release is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn sequesters target SNAREs (t-SNAREs) through its C-terminal VAMP-like domain (VLD). Cumulative biochemical results suggest that the tomosyn-SNARE complex is so tight that VAMP2 cannot displace tomosyn. Based on these results, the tomosyn-SNARE complex has been believed to be a dead-end complex to inhibit neurotransmitter release. On the other hand, some studies using siRNA depletion of tomosyn suggest that tomosyn positively regulates exocytosis. Therefore, it is still controversial whether tomosyn is a simple inhibitor for neurotransmitter release. We recently reported that the inhibitory activity of tomosyn is regulated by the tail domain binding to the VLD. In this study, we employed the liposome fusion assay in order to further understand modes of action of tomosyn in detail. The tail domain unexpectedly had no effect on binding of the VLD to t-SNARE-bearing liposomes. Nonetheless, the tail domain decreased the inhibitory activity of the VLD on the SNARE complex-mediated liposome fusion. These results indicate that the tail domain controls membrane fusion through tomosyn displacement by VAMP2. Deletion of the tail domain-binding region in the VLD retained the binding to t-SNAREs and promoted the liposome fusion. Together, we propose here a novel mechanism of tomosyn that controls synaptic vesicle fusion positively by serving as a placeholder for VAMP2.  相似文献   

14.
Treatment of rat cerebrocortical synaptosomes with botulinum toxin types E and C1 or tetanus toxin removed the majority of intact SNAP-25, syntaxin 1A/1B, and synaptobrevin and diminished Ca(2+)-dependent K+ depolarization-induced noradrenaline secretion. With botulinum toxin type E, <10% of intact SNAP-25 remained and K(+)-evoked release of glutamate and GABA was inhibited. The large component of noradrenaline release evoked within 120 s by inclusion of the Ca2+ ionophore A23187 with the K+ stimulus was also attenuated by these toxins; additionally, botulinium neurotoxin type E blocked the first 60 s of ionophore-induced GABA and glutamate exocytosis. However, exposure to A23187 for longer periods induced a phase of secretion nonsusceptible to any of these toxins (>120 s for noradrenaline; >60 s for glutamate or GABA). Most of this late phase of release represented exocytosis because of its Ca2+ dependency, ATP requirement, and sensitivity to a phosphatidylinositol 4-kinase inhibitor. Based on these collective findings, we suggest that the ionophore-induced elevation of [Ca2+]i culminates in the disassembly of complexes containing nonproteolyzed SNAP receptors protected from the toxins that can then contribute to neuroexocytosis.  相似文献   

15.
Cortical vesicles (CV) possess components critical to the mechanism of exocytosis. The homotypic fusion of CV centrifuged or settled into contact has a sigmoidal Ca2+ activity curve comparable to exocytosis (CV–PM fusion). Here we show that Sr2+ and Ba2+ also trigger CV–CV fusion, and agents affecting different steps of exocytotic fusion block Ca2+, Sr2+, and Ba2+-triggered CV–CV fusion. The maximal number of active fusion complexes per vesicle, <n\>Max, was quantified by NEM inhibition of fusion, showing that CV–CV fusion satisfies many criteria of a mathematical analysis developed for exocytosis. Both <n\>Max and the Ca2+ sensitivity of fusion complex activation were comparable to that determined for CV–PM fusion. Using Ca2+-induced SNARE complex disruption, we have analyzed the relationship between membrane fusion (CV–CV and CV–PM) and the SNARE complex. Fusion and complex disruption have different sensitivities to Ca2+, Sr2+, and Ba2+, the complex remains Ca2+- sensitive on fusion-incompetent CV, and disruption does not correlate with the quantified activation of fusion complexes. Under conditions which disrupt the SNARE complex, CV on the PM remain docked and fusion competent, and isolated CV still dock and fuse, but with a markedly reduced Ca2+ sensitivity. Thus, in this system, neither the formation, presence, nor disruption of the SNARE complex is essential to the Ca2+-triggered fusion of exocytotic membranes. Therefore the SNARE complex alone cannot be the universal minimal fusion machine for intracellular fusion. We suggest that this complex modulates the Ca2+ sensitivity of fusion.  相似文献   

16.
Since neurotransmitter releasing into the synaptic space delivers electrical signals from presynaptic neural cell to the postsynaptic cell, neurotransmitter secretion must be much orchestrated. Crowded intracellular vesicles involving neurotransmitters present a question of the how secretory vesicles fuse onto the plasma membrane in a fast synchronized fashion. Complexin is one of the most experimentally studied proteins that regulate assembly of fusogenic four‐helix SNARE complex to synchronized neurotransmitter secretion. We used MD simulation to investigate the interaction of complexin with the neural SNARE complex in detail. Our results show that the SNARE complex interacts with the complexin central helix by forming salt bridges and hydrogen bonds. Complexin also can interact with the Q‐SNARE complex instead of synaptobrevin to decrease the Q‐SNARE flexibility. The complexin alpha‐accessory helix and the C‐terminal region of synaptobrevin can interact with the same region of syntaxin. Although the alpha‐accessory helix aids the tight binding of the central helix to the SNARE complex, its proximity with synaptobrevin causes the destabilization of syntaxin and Sn1 helices. This study suggests that the alpha‐accessory helix of complexin can be an inhibiting factor for membrane fusion by competing with synaptobrevin for binding to the Q‐SNARE complex. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 560–570, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
18.
目的:构建SDH-SV2C-L4融合蛋白表达载体,在大肠杆菌中表达具有山梨糖脱氢酶(SDH)活性的融合蛋白。方法:将C亚型突触囊泡蛋白2大突环L4(SV2C-L4)基因与SDH基因以GGGS柔性接头连接,在大肠杆菌DH5α中表达;用NBT染色和DCIP脱色的方法检测融合蛋白的SDH活性。结果:DNA测序及SDS-PAGE结果显示构建了融合蛋白表达载体,并表达了SDH-SV2C-L4融合蛋白,相对分子质量约80×103;DCIP脱色及NBT染色均检测到融合蛋白的SDH活性。结论:与SV2C-L4融合的SDH仍具有活性,为下一步SV2C-L4活性检测方法的建立及SDH与SV2C-L4的其他相关研究奠定了基础。  相似文献   

19.
In neuroendocrine cells, annexin‐A2 is implicated as a promoter of monosialotetrahexosylganglioside (GM1)‐containing lipid microdomains that are required for calcium‐regulated exocytosis. As soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) require a specific lipid environment to mediate granule docking and fusion, we investigated whether annexin‐A2‐induced lipid microdomains might be linked to the SNAREs present at the plasma membrane. Stimulation of adrenergic chromaffin cells induces the translocation of cytosolic annexin‐A2 to the plasma membrane, where it colocalizes with SNAP‐25 and S100A10. Cross‐linking experiments performed in stimulated chromaffin cells indicate that annexin‐A2 directly interacts with S100A10 to form a tetramer at the plasma membrane. Here, we demonstrate that S100A10 can interact with vesicle‐associated membrane protein 2 (VAMP2) and show that VAMP2 is present at the plasma membrane in resting adrenergic chromaffin cells. Tetanus toxin that cleaves VAMP2 solubilizes S100A10 from the plasma membrane and inhibits the translocation of annexin‐A2 to the plasma membrane. Immunogold labelling of plasma membrane sheets combined with spatial point pattern analysis confirmed that S100A10 is present in VAMP2 microdomains at the plasma membrane and that annexin‐A2 is observed close to S100A10 and to syntaxin in stimulated chromaffin cells. In addition, these results showed that the formation of phosphatidylinositol (4,5)‐bisphosphate (PIP2) microdomains colocalized with S100A10 in the vicinity of docked granules, suggesting a functional interplay between annexin‐A2‐mediated lipid microdomains and SNAREs during exocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号