首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The South American tree Solanum mauritianum Scopoli (Solanaceae), a major environmental weed in South Africa and New Zealand, has been targeted for biological control, with releases of agents restricted to South Africa. The leaf-sucking lace bug, Gargaphia decoris Drake (Tingidae), so far the only agent released, has become established in South Africa with recent reports of severe damage at a few field sites. To evaluate the insect’s suitability for release in New Zealand, host-specificity testing was carried out in South Africa in laboratory and open-field trials, with selected cultivated and native species of Solanum from New Zealand. No-choice tests confirmed the results of earlier trials that none of the three native New Zealand Solanum species are acceptable as hosts. Although the cultivated Solanum muricatum Aiton and S. quitoense Lam. also proved unacceptable as hosts, some cultivars of S. melongena L. (eggplant) supported feeding, development and oviposition in the no-choice tests. Although eggplant was routinely accepted under laboratory no-choice conditions in this and previous studies, observations in the native and introduced range of G. decoris, open-field trials and risk assessment based on multiple measures of insect performance indicate that the insect has a host range restricted to S. mauritianum. These results strongly support the proposed release of G. decoris in New Zealand because risks to non-target native and cultivated Solanum species appear to be negligible. An application for permission to release G. decoris in New Zealand will be submitted to the regulatory authority. Handling editor: John Scott.  相似文献   

2.
Terry Olckers   《Biological Control》2003,28(3):302-312
Biological control of Solanum mauritianum Scopoli, a major environmental weed in the high-rainfall regions of South Africa, is dependent on the establishment of agents that can reduce fruiting and limit seed dispersal. The flowerbud weevil, Anthonomus santacruzi Hustache, is a promising fruit-reducing agent, despite ambiguous results obtained during host-specificity evaluations in quarantine. Adult no-choice tests showed that although feeding is confined to Solanum species, normal feeding and survival occurred on the foliage (devoid of floral material) of cultivated eggplant (aubergine), potato, and several native South African Solanum species. During paired-choice tests, involving floral bouquets in 10-liter containers, A. santacruzi oviposited in the flower buds of 12 of the 17 test species, including potato and eggplant, although significantly more larvae were recovered on S. mauritianum than on eight other species. Larvae survived to adults on all 12 species, with survival significantly lower on only four species than on S. mauritianum. However, during multi-choice tests, involving potted plants in a large walk-in cage, A. santacruzi consistently displayed significant feeding and oviposition preferences for S. mauritianum over all of the 14 Solanum species tested. Analyses of the risk of attack on nontarget Solanum plants suggested that, with the possible exception of two native species, none is likely to be extensively utilized as a host in the field. Also, host records and field surveys in South America have suggested that A. santacruzi has a very narrow host range and that the ambiguous laboratory results are further examples of artificially expanded host ranges. These and other considerations suggest that A. santacruzi should be considered for release against S. mauritianum in South Africa, and an application for permission to release the weevil was submitted in 2003.  相似文献   

3.
T. Olckers 《BioControl》2004,49(3):323-339
The South American tree Solanum mauritianum, a major environmentalweed in the high-rainfall regions of SouthAfrica, has proved to be a difficult target forbiological control. Artificially expanded hostranges of candidate agents during quarantinehost-specificity tests, have resulted in therelease of only one agent species which has sofar had a negligible impact on the weed. Thenecessity for additional agents resulted in theimportation of a leaf-mining flea beetle, anunidentified species of Acallepitrix,from Brazil in 1997. No-choice tests inquarantine showed that potential host plantsare confined to the genus Solanum.Although several non-target plants, includingcultivated eggplant (aubergine) and some nativeSouth African Solanum species, sustainedfeeding, oviposition and the development oflarval leaf mines, most of these were inferiorhosts. These results were confirmed by pairedchoice tests, where Acallepitrix sp. nov.displayed significant feeding and ovipositionpreferences for S. mauritianum and where,with few exceptions, more larval leaf mineswere initiated on S. mauritianum.Interpretation of the host-specificity testswas facilitated by a risk assessment matrixwhich suggested that the risk of feeding andoviposition on non-target Solanum plants,including eggplant cultivations, was relativelylow. These and other considerations, such asthe lack of evidence of damage inflicted oncultivated Solanaceae in South America, suggestthat Acallepitrix sp. nov. could beconsidered for release against S. mauritianum in South Africa. However, the results of the host-specificity tests remain ambiguous and until more compelling evidence is obtained from field surveys and open-field trials in Brazil, an application for permission to release the flea beetle in South Africa will not be considered.  相似文献   

4.
The invasive tree Solanum mauritianum Scop. has been targeted for biological control in South Africa and New Zealand, by deploying insect agents that could constrain its excessive reproductive output. The flower-feeding weevil Anthonomus santacruzi (Curculionidae) was approved for release in South Africa in 2007 but following the loss of the original culture in quarantine, new stocks were introduced from Argentina in 2008–2009. This study was initiated to confirm that the host range of the new culture was the same as that of the previous one, but also to assess the risks associated with the weevil's release in New Zealand. Different testing procedures, including no-choice tests and multi-choice tests in different arenas, produced inconsistent and ambiguous results. During no-choice tests, oviposition and larval development to adulthood occurred on three non-target species including two native South African and one native New Zealand Solanum species. However, subsequent multi-choice tests and a risk assessment suggested that the risks of anything more than collateral damage to non-target Solanum species are low. Overall, these data do not deviate substantially from the results of the original quarantine tests which facilitated the release of A. santacruzi in South Africa in 2009. Although we argue that none of the New Zealand native and cultivated species are at risk, stronger evidence from open-field trials and chemical ecology studies may be required to convince the regulatory authorities that A. santacruzi is suitable for release in New Zealand.  相似文献   

5.
The invasive tree Solanum mauritianum Scopoli remains one of the world’s most widespread environmental weeds. Despite biocontrol providing one of the few viable long-term solutions to tackling S. mauritianum invasions globally, only South Africa and, more recently, New Zealand, have programmes in place. Ongoing biocontrol efforts against S. mauritianum are reviewed here with particular reference to South Africa. The South African programme has suffered a troubled history, with considerable research efforts culminating in the eventual release and establishment of only two insect agents, Gargaphia decoris Drake and Anthonomus santacruzi Hustache. The difficulties experienced have hindered research into new agents, causing apprehension in using biocontrol internationally. However, recent studies have demonstrated that biocontrol may be deserving of renewed investment, particularly within an integrated management context. In this review, we advocate for the revival of the S. mauritianum biocontrol programme in South Africa, and discuss possible avenues for future research internationally.  相似文献   

6.
T. Olckers 《BioControl》1998,43(2):225-239
The South American tree Solanum mauritianum is a major environmental weed in the high-rainfall regions of South Africa and has been targeted for biological control. Potential agents included five species of the genus Platyphora, which were imported from South America in 1994. Platyphora species associated with Solanaceae reputedly have very specific habitat requirements and host plant preferences in the field. Despite this, host-specificity tests on one species, Platyphora semiviridis, revealed a broad physiological host range. Although laboratory tests showed that P. semiviridis is confined to Solanum species and cannot survive on solanaceous crops outside that genus, it developed on potato and cultivated eggplant (aubergine) as well as on 10 native South African Solanum species. With few exceptions, there were no consistent differences in survival and duration of development on these compared with S. mauritianum. Furthermore, at least six of these non-target species, including potato and eggplant, supported breeding colonies of the beetles in cages. During choice tests in both small and larger cages, P. semiviridis avoided potato but did not consistently discriminate between S. mauritianum, eggplant and six native solanums for larviposition. Despite these findings, P. semiviridis has never been recorded on either potato or eggplant in South America, where it was only observed to feed on S. mauritianum. Although there are several reasons why P. semiviridis is unlikely to attack non-target Solanum species in the field, it will not be released in South Africa because there are other imported agents which have displayed narrower physiological host ranges and which may be more effective.  相似文献   

7.
Testing the specificity of candidate agents is a key component of risk analysis in weed biological control. This step is often time-consuming due to the numerous plant species that need to be tested under quarantine conditions in the invaded country of the weed species. Here, we examined whether an abridged phylogenetically based test list could be used in the weed's native range to quickly screen the host specificity of candidate agents. Ten plant species were used to test the host specificity of a promising candidate for the biological control of Sonchus oleraceus in Australia, the gall midge, Cystiphora sonchi. No-choice and choice tests were carried out in the native Mediterranean range of the midge. The results showed the midge has potential to threaten native Australian species, as those species showed high infestation levels in no-choice tests and produced significantly higher numbers of galls in choice tests. As a result of this approach, C. sonchi was rapidly discarded from the list of agents to be imported into Australian quarantines for further tests. This study demonstrates that testing a few key phylogenetically related species in the native range may save cost and effort in a weed biological control programme.  相似文献   

8.
Pereskia aculeata Miller (Cactaceae) is an invasive alien species in South Africa that is native in Central and South America. In South Africa, P. aculeata outcompetes native plant species leading to a reduction in biodiversity at infested sites. Herbicidal and mechanical control of the plant is ineffective and unsustainable, so biological control is considered the only potential solution. Climatic matching and genotype matching indicated that the most appropriate regions in which to collect biological control agents were Santa Catarina and Rio de Janeiro provinces in Southern Brazil. Surveys throughout the native distribution resulted in 15 natural enemy species that were associated with the plant. Field host range data, as well as previous host plant records, were used to prioritise which of the species were most likely to be suitably host specific for release in South Africa. The mode of damage was used to determine which species were most likely to be damaging and effective if released. The most promising species prioritised for further study, including host specificity and impact studies, were the stem-wilter Catorhintha schaffneri Brailovsky & Garcia (Coreidae); the stem boring species Acanthodoxus machacalis Martins & Monné (Cerambycidae), Cryptorhynchus sp. (Curculionidae) and Maracayia chlorisalis (Walker) (Crambidae) and the fruit galler Asphondylia sp. (Cecidomyiidae). By prioritising the potential biological control agents that are most likely to be host-specific and damaging, the risk of conducting host specificity testing on unsuitable or ineffective biological control agents is reduced.  相似文献   

9.
Tecoma stans (Bignoniaceae), is an evergreen shrub that has a wide natural distribution in the tropical and subtropical parts of the western hemisphere. This shrub is native to Mexico and the southern regions of the USA. This weed is widely distributed in South Africa and neighbouring countries. As part of the biological control initiative, a leafmining fly, Pseudonapomyza sp. (Diptera: Agromyzidae), was imported into South Africa, and was subsequently studied as a potential biological control agent for T. stans. During no-choice tests involving 46 plant species in 16 families, Pseudonapomyza sp. only oviposited and developed on T. stans. Neither oviposition nor larval development was recorded on the closely related and indigenous plant species. When six plant species in the Bignoniaceae family were exposed to Pseudonapomyza sp. during multi-choice tests, oviposition and larval development only occurred on T. stans. It was concluded that Pseudonapomyza sp. was sufficiently host-specific to be released against T. stans in South Africa. Pseudonapomyza sp. also displayed very promising biological attributes that could enhance its effectiveness to control T. stans.  相似文献   

10.
Pereskia aculeata Miller (Cactaceae) is an invasive alien plant from Central and South America that has become a problematic environmental weed in South Africa. A potential biological control agent, the stem-wilter, Catorhintha schaffneri Brailovsky & Garcia (Coreidae), was collected in southern Brazil and imported into quarantine in South Africa. Field host range data suggested that C. schaffneri has a host range restricted to P. aculeata. No-choice nymph survival tests were then conducted on 27 test plant species in 9 families. Survival to the adult stage was only recorded on P. aculeata and the closely related Pereskia grandifolia Haw. (Cactaceae). Mortality was significantly higher on P. grandifolia with only 3% of the nymphs reaching the adult stage compared with 74% on P. aculeata indicating that P. aculeata is the primary host plant. P. grandifolia is native in South America and is of no agricultural importance in South Africa so any feeding on P. grandifolia in South Africa would have no negative environmental or economic consequences. In other tests, adult survival on P. aculeata [25.8 days (SE ± 3.74)] was significantly longer than on other test plant species [4.3 days (SE ± 0.36)] further confirming the host specificity of the species. Impact studies conducted in quarantine indicated that C. schaffneri is damaging to P. aculeata, significantly reducing the number of leaves and the shoot lengths of plants, even at relatively low insect densities. C. schaffneri is safe for release in South Africa and is likely to be a damaging and effective agent.  相似文献   

11.
Native to Central America, Tecoma stans (L.) Juss ex Kunth var. stans (Bignoniaceae) is a small tree that is invasive in South Africa and neighbouring countries. The plant was targeted for biological control in South Africa in 2003, with two insect agents released and established so far. The root-feeding flea beetle, Heikertingerella sp. (Coleoptera: Galerucinae: Alticini), was imported from Mexico as an additional biocontrol agent and its biology and host specificity was assessed under quarantine conditions. The beetle displayed a generation time (i.e. from adult to adult) of 49 to 67 days, ensuring four annual generations under laboratory conditions. The beetle's larval and adult stages inflicted high levels of damage on the root system and the leaves of T. stans, respectively. No-choice tests with 40 test-plant species revealed adult feeding on only two non-target species, Tecoma × alata and T. capensis (Thunb.) Spach, with feeding four times higher on T. stans. Larvae developed to adulthood on T. stans only. Multi-choice tests involving the three Tecoma species confirmed these trends, demonstrating that Heikertingerella sp. is host specific. Since T. × alata is a hybrid of T. stans with invasive tendencies, any unlikely attacks by Heikertingerella sp. would be inconsequential in South Africa. The native T. capensis, which suffered little leaf damage and produced no F1 adults, is also at minimal risk of attack. We conclude that Heikertingerella sp. is a suitable biocontrol agent for T. stans and that permission for its release in South Africa be sought.  相似文献   

12.
Heteroperreyia hubrichiMalaise (Hymenoptera: Pergidae), a foliagefeeding sawfly of Schinusterebinthifolius Raddi (Sapindales:Anacardiaceae), was studied to assess itssuitability as a classical biological controlagent of this invasive weed in Hawaii. No-choice host-specificity tests were conductedin Hawaiian quarantine on 20 plant species in10 families. Besides the target weed, adultfemales oviposited on four test species. Females accepted the Hawaiian native Rhussandwicensis A. Gray (Sapindales:Anacardiaceae) as an oviposition host equallyas well as the target species. The other threespecies received significantly fewer eggs. Neonate larvae transferred onto test plantssuccessfully developed to pupae on S.terebinthifolius (70% survival) and R.sandwicensis (1% survival). All other 18test plant species failed to support larvaldevelopment. A risk analysis was conducted toquantify the acceptability of non-targetspecies as host plants for H. hubrichi onthe basis of the insect's performance atvarious stages in its life cycle. Risk ofdamage to all plant species tested wasinsignificant except for R. sandwicensis. Risk to this native plant relative to S.terebinthifolius was estimated at 1%. Currently this level of risk is too high torequest introduction of this insect into theHawaiian environment. Detailed impact studiesin the native range of S. terebinthifoliusare needed to identify thepotential benefit that this insect offers. Also, field studies in South America withpotted R. sandwicensis would give a morereliable analysis of the risk this nativeHawaiian plant would face from naturalpopulations of H. hubrichi.  相似文献   

13.
Schinus terebinthifolia Raddi (Anacardiaceae) is an introduced ornamental tree from South America that has become one of the most invasive weeds in Hawaii and Florida, USA. Exploratory surveys in the plant’s native range from 1950 to 2014 identified several potential biological control agents. One of these is the leaflet rolling moth Episimus unguiculus Clarke (Lepidoptera: Tortricidae), previously known as Episimus utilis Zimmerman. This biological control agent was released in Hawaii in the 1950s where high densities were occasionally observed, leading to partial control of S. terebinthifolia by the 1960s. Larvae are leaf tiers capable of completely defoliating small plants. In order to investigate the release of E. unguiculus in the continental USA, a series of laboratory no- choice, and multiple-choice tests were conducted in Florida, and a preliminary open field test with a native plant in Hawaii. Under the confined laboratory conditions imposed during the no-choice tests, E. unguiculus accepted the economically important Pistacia spp. and several other non-target plants for oviposition and development. However, in the multiple-choice tests E. unguiculus exhibited a clear preference for S. terebinthifolia relative to non-target plants accepted in the no-choice tests. Overall, the results of field observations during surveys in South America and Hawaii and host range studies completed in Hawaii and Florida showed that E. unguiculus is a narrow specialist on S. terebinthifolia, its natural host plant.  相似文献   

14.
Inherent in any biological control program is the risk of nontarget effects. Pseudacteon tricuspisBorgmeier, a parasitoid phorid fly, has been introduced to the United States from South America as a potential biocontrol agent of the red imported fire ant, Solenopsis invictaBuren. We conducted tests of host specificity on introduced populations of P. tricuspis, which are attracted to alarm pheromones released by their hosts during events such as mound disturbances and interspecific interactions. We monitored disturbed mounds of S. invicta and its close congener, S. geminata(F.), during the expansion of P. tricuspis across north Florida and after populations had been established for ~3 years. We also tested host acceptance in established populations of P. tricuspis by offering trays containing S. invicta, S. geminata, and 14 additional ant species representing 12 different non-Solenopsis genera. Although P. tricuspiswas commonly observed to hover over and attempt to oviposit on S. invicta, we never observed any parasitization attempts on any other ant species. As predicted by laboratory tests, released populations of P. tricuspis appear to be highly host specific and pose no obvious threat to nontarget species.  相似文献   

15.
The flowerbud-feeding weevil Anthonomus santacruzi Hustache (Coleoptera: Curculionidae) was released in South Africa in 2008 for the biological control of the invasive tree Solanum mauritianum Scopoli (Solanaceae). The weevil was widely deployed throughout KwaZulu-Natal province, which supports large S. mauritianum infestations, and has become well established in its warmer coastal regions. The aim of this study was to provide field evidence that climate is constraining the weevil’s distribution in South Africa. Solanum mauritianum populations were sampled at 23 sites across an altitudinal gradient in KwaZulu-Natal to determine A. santacruzi densities in relation to food availability and climatic variables. Despite significantly higher amounts of floral material on S. mauritianum at the higher altitude inland sites, A. santacruzi numbers were significantly higher at the lower altitude coastal sites. There was thus a significant negative relationship between A. santacruzi numbers and altitude and significant positive relationships between A. santacruzi numbers and both temperature and humidity. Neither rainfall nor food availability influenced A. santacruzi numbers, although lower amounts of floral material at the coastal sites may well have been caused by higher weevil densities at these sites. Anthonomus santacruzi was absent at only three sites, all at higher altitudes, further demonstrating that conditions in coastal or low-altitude regions are favourable for establishment and population proliferation. Future release efforts in KwaZulu-Natal, but also in other South African provinces, should thus be focused on coastal regions and inland regions that are below 1000 m above sea level.  相似文献   

16.
Campuloclinium macrocephalum (Less.) DC. (Asteraceae) (pompom weed), an invader in South Africa and Swaziland, threatens biodiversity conservation, agriculture and tourism in the region. We report on the host range and impact of the flower-feeding moth, Cochylis campuloclinium Brown (Lepidoptera: Tortricidae), the second insect biological control agent to be considered for C. macrocephalum in South Africa. Laboratory host-specificity tests were conducted on 31 Asteraceae species. Field host range studies included 17 non-target Asteraceae species. Results of both C. campuloclinium laboratory and field host-range trials indicated that it is suitably host specific. In laboratory host-range trials, only C. macrocephalum and the closely related native, Adenostemma caffrum DC. (Asteraceae), received feeding damage, while in field host-range trials, the moth was only recorded on the target. Laboratory impact studies showed that C. campuloclinium destroyed a significant number of florets in flower buds (76%) and seeds in mature flowers (54%). Based on evidence from the native range, there appears to be no competitive interactions between C. campuloclinium and the already established stem- and leaf-deforming thrips, Liothrips tractabilis Mound & Pereyra (Thysanoptera: Phlaethripinae). The two insect agents should perform a complementary role of reducing flowering (L. tractabilis) and seed production (C. campuloclinium). Based on the above data, permission for the release of the moth was sought in August 2015.  相似文献   

17.
Foreign surveys in China discovered a defoliating insect species feeding on the leaves of Chinese tallowtree (Triadica sebifera), an invasive weed of the southeastern U.S.A. The life history of this species, Sauris nr. purpurotincta (Lepidoptera: Geometridae), was examined and larval no-choice and adult multiple-choice host range tests were conducted in quarantine to evaluate their suitability for biological control of Chinese tallowtree. The results indicated that the larvae have five instars and require approximately 22 days to complete development to the adult stage. Host range tests indicated that the larvae could not feed and complete development on most species tested. However, 40% of the larvae survived when fed leaves of Hippomane mancinella, a state-listed endangered species in Florida, and all larvae survived when fed Morella cerifera, a common native species of the southeastern U.S.A. Multiple-choice oviposition tests indicated eggs were laid on leaves of both a south Florida native plant Gymnanthes lucida and Chinese tallowtree. Considering this broad host range, this species will not be considered further for biological control of Chinese tallowtree in the U.S.A.  相似文献   

18.
The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.  相似文献   

19.
Biological control agents used to manage alien vegetation are generally viewed as providing an ecosystem service, owing to reduced ecological and economic costs of invasion following their release. In particular, gall‐formers are popular as biological control agents because they are host‐specific and therefore considered low risk. However, galls can also be considered to be ecological engineers, because they provide nutritional resources for native invertebrates. We tested whether native invertebrates had formed associations with the gall‐forming fungus Uromycladium tepperianum, introduced into South Africa to control the Australian invasive alien tree Acacia saligna, by collecting U. tepperianum galls and monitoring emergence. We found that a number of invertebrates had formed associations with the biological control agent, among which was the important citrus pest, Thaumatotibia leucotreta (false codling moth). We used pheromone‐baited traps to ascertain if this supplementary source of T. leucotreta increased their abundance in orchards close to patches of gall host, but did not find this to be the case. We did find, however, that control measures used by farmers explained T. leucotreta abundances in traps, which may have obscured detection of any effects of a nearby host for the pest. Nevertheless, this study illustrates the first case of a host‐specific classical biological control agent providing resources for an economically significant crop pest. We conclude that although biological control agents are strictly vetted to ensure host‐specificity, introduced biological control agents that become abundant and can act as ecological engineers pose risks when native biota form associations with them, resulting in a number of possible cascading ecosystem effects. In addition, there could be economic consequences when these associated species include agricultural pests. We conclude that not just host specificity, but potential ecological effects of biological control agents, should be considered in their selection.  相似文献   

20.
The Australian melaleuca tree, Melaleuca quinquenervia (Cav.) S. T. Blake (Myrtaceae), has naturalized in southern Florida,U.S.A., and is now one of that regions most important weeds.Primarily a weed of wetlands, it also infests neighboring drierareas. Current efforts to restore the South Florida ecosystem arethreatened by the continuing range expansion of melaleuca andother weeds. In an effort to supplement the current chemical andcultural control methods for melaleuca, a search for potentialbiological control agents was begun in Australia in 1986. Thesawfly, Lophyrotoma zonalis, was determined after extensive fieldand laboratory studies to have potential as a biological controlagent. Larvae of L. zonalis eat leaves and occasionally defoliatelarge trees in Australia. Host range studies were conducted in aFlorida quarantine facility with native and cultivated plantspecies. Multi-choice and no-choice oviposition tests wereconducted with 36 species in the Myrtaceae and with 18 species inother families. Larvae developed to prepupae and adults from theeggs oviposited on 23 species of Myrtaceae only on 3 species ofbottlebrushes, Callistemon. Medium-sized larvae were tested forfeeding on bouquets of plant cuttings and on potted plants. Theyare the stage that might wander from defoliated trees. Noticeablefeeding, but much less than on melaleuca, was restricted to theMyrtaceae, except for a few individual larvae that fed on waxmyrtle, Myrica cerifera. Medium-sized larvae became prepupae onlyon Melaleuca decora (73%) and on wax myrtle (10%). However,neither species received eggs in the oviposition tests. Thesestudies confirmed the narrow host range of L. zonalis aspreviously reported from field and laboratory studies inAustralia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号