首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-protein and high-protein diets regulate energy metabolism in animals and humans. To evaluate whether different dietary protein sources modulate energy balance when ingested at average levels obesity-prone male C57BL/6J mice were pair-fed high-fat diets (67 energy percent fat, 18 energy percent sucrose and 15 energy percent protein) with either casein, chicken filet or a mixture of cod and scallop (1∶1 on amino acid content) as protein sources. At equal energy intake, casein and cod/scallop fed mice had lower feed efficiency than chicken fed mice, which translated into reduced adipose tissue masses after seven weeks of feeding. Chicken fed mice had elevated hepatic triglyceride relative to casein and cod/scallop fed mice and elevated 4 h fasted plasma cholesterol concentrations compared to low-fat and casein fed mice. In casein fed mice the reduced adiposity was likely related to the observed three percent lower apparent fat digestibility compared to low-fat, chicken and cod/scallop fed mice. After six weeks of feeding an oral glucose tolerance test revealed that despite their lean phenotype, casein fed mice had reduced glucose tolerance compared to low-fat, chicken and cod/scallop fed mice. In a separate set of mice, effects on metabolism were evaluated by indirect calorimetry before onset of diet-induced obesity. Spontaneous locomotor activity decreased in casein and chicken fed mice when shifting from low-fat to high-fat diets, but cod/scallop feeding tended (P = 0.06) to attenuate this decrease. Moreover, at this shift, energy expenditure decreased in all groups, but was decreased to a greater extent in casein fed than in cod/scallop fed mice, indicating that protein sources regulated energy expenditure differently. In conclusion, protein from different sources modulates energy balance in C57BL/6J mice when given at normal levels. Ingestion of a cod/scallop-mixture prevented diet-induced obesity compared to intake of chicken filet and preserved glucose tolerance compared to casein intake.  相似文献   

2.
The effect on genetically obese mice of a milk whey protein isolate (WPI) and soy protein isolate (SPI) and their hydrolysates (WPI-H, SPI-H) on the rate of body fat disappearance was investigated. Male yellow KK mice were made obese by feeding with a high-fat diet containing 30% fat from 6 to 10 weeks of age. They were then fed with an energy-restricted low fat (5.0%) and high protein (35% WPI, WPI-H, SPI or SPI-H) diet for 2 weeks at the 60% level of energy intake by mice on laboratory feed. During the weight reduction period, the body weight of the WPI, WPI-H, SPI and SPI-H groups changed by -9.1, -9.1, -10.0 and -11.1 g/14 days, respectively, the reduction being significantly lower in the SPI-H group than in the WPI and WPI-H groups. The plasma total cholesterol level was significantly lower with the SPI diet, and the plasma glucose level was lower with the SPI and SPI-H diets than with the WPI and WPI-H diets. Although the body protein content was comparable in all the groups, the body fat content was significantly lower with the SPI diet than with the WPI diet, and was also significantly lower with the SPI-H diet than with the WPI and WPI-H diets. The weight of the perirenal fat pads was significantly lower with the SPI-H diet than with the WPI and WPI-H diets. These results indicate that SPI and SPI-H are suitable protein sources in an energy-restricted diet for treating obesity.  相似文献   

3.
The effect on genetically obese mice of a milk whey protein isolate (WPI) and soy protein isolate (SPI) and their hydrolysates (WPI-H, SPI-H) on the rate of body fat disappearance was investigated. Male yellow KK mice were made obese by feeding with a high-fat diet containing 30% fat from 6 to 10 weeks of age. They were then fed with an energy-restricted low fat (5.0%) and high protein (35% WPI, WPI-H, SPI or SPI-H) diet for 2 weeks at the 60% level of energy intake by mice on laboratory feed. During the weight reduction period, the body weight of the WPI, WPI-H, SPI and SPI-H groups changed by -9.1, -9.1, -10.0 and -11.1 g/14 days, respectively, the reduction being significantly lower in the SPI-H group than in the WPI and WPI-H groups. The plasma total cholesterol level was significantly lower with the SPI diet, and the plasma glucose level was lower with the SPI and SPI-H diets than with the WPI and WPI-H diets. Although the body protein content was comparable in all the groups, the body fat content was significantly lower with the SPI diet than with the WPI diet, and was also significantly lower with the SPI-H diet than with the WPI and WPI-H diets. The weight of the perirenal fat pads was significantly lower with the SPI-H diet than with the WPI and WPI-H diets. These results indicate that SPI and SPI-H are suitable protein sources in an energy-restricted diet for treating obesity.  相似文献   

4.
Effects of functional sweeteners on the development of the metabolic syndrome and atherosclerosis are unknown. The objective was to compare the effect of dietary carbohydrate in the form of sucrose (SUCR) to D‐tagatose (TAG; an isomer of fructose currently used as a low‐calorie sweetener) on body weight, blood cholesterol concentrations, hyperglycemia, and atherosclerosis in low‐density lipoprotein receptor deficient (LDLr−/−) mice. LDLr−/− male and female mice were fed either standard murine diet or a diet enriched with TAG or SUCR as carbohydrate sources for 16 weeks. TAG and SUCR diets contained equivalent amounts (g/kg) of protein, fat, and carbohydrate. We measured food intake, body weight, adipocyte diameter, serum cholesterol and lipoprotein concentrations, and aortic atherosclerosis. Macrophage immunostaining and collagen content were examined in aortic root lesions. CONTROL and TAG‐fed mice exhibited similar energy intake, body weights and blood glucose and insulin concentrations, but SUCR‐fed mice exhibited increased energy intake and became obese and hyperglycemic. Adipocyte diameter increased in female SUCR‐fed mice compared to TAG and CONTROL. Male and female SUCR‐fed mice had increased serum cholesterol and triglyceride concentrations compared to TAG and CONTROL. Atherosclerosis was increased in SUCR‐fed mice of both genders compared to TAG and CONTROL. Lesions from SUCR‐fed mice exhibited pronounced macrophage immunostaining and reductions in collagen content compared to TAG and CONTROL mice. These results demonstrate that in comparison to sucrose, equivalent substitution of TAG as dietary carbohydrate does not result in the same extent of obesity, hyperglycemia, hyperlipidemia, and atherosclerosis.  相似文献   

5.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

6.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

7.
C57BL/6 female mice were fed high fat diets containing different types of carbohydrate (sucrose or corn starch) and contents of cholesterol (0.03 % or 1 %) to identify early metabolic changes leading to increases in leptin levels and eventual insulin resistance. Under identical dietary fat conditions, type of carbohydrate and cholesterol content contributed to the timing of leptin increases. Mice fed a high-fat, high-sucrose diet showed early (4 weeks) and robust increases in circulating insulin and leptin levels (2-fold and 5-fold, respectively). In contrast, mice fed this diet with added cholesterol or with sucrose substituted by corn starch led to marked delays (8-10 weeks) in the elevations of insulin and leptin, although body weight gains were nearly identical among test diet groups. Thus, sucrose in combination with saturated fat played a specific role in initiating early metabolic changes associated with elevated leptin and insulin levels. Because leptin levels were most reflective of changes in insulin, our data support a role for insulin in determining plasma leptin levels in mice.  相似文献   

8.
Obesity is frequently associated with the consumption of high carbohydrate/fat diets leading to hyperinsulinemia. We have demonstrated that soy protein (SP) reduces hyperinsulinemia, but it is unclear by which mechanism. Thus, the purpose of the present work was to establish whether SP stimulates insulin secretion to a lower extent and/or reduces insulin resistance, and to understand its molecular mechanism of action in pancreatic islets of rats with diet-induced obesity. Long-term consumption of SP in a high fat (HF) diet significantly decreased serum glucose, free fatty acids, leptin, and the insulin:glucagon ratio compared with animals fed a casein HF diet. Hyperglycemic clamps indicated that SP stimulated insulin secretion to a lower extent despite HF consumption. Furthermore, there was lower pancreatic islet area and insulin, SREBP-1, PPARgamma, and GLUT-2 mRNA abundance in comparison with rats fed the casein HF diet. Euglycemic-hyperinsulinemic clamps showed that the SP diet prevented insulin resistance despite consumption of a HF diet. Incubation of pancreatic islets with isoflavones reduced insulin secretion and expression of PPARgamma. Addition of amino acids resembling the plasma concentration of rats fed casein stimulated insulin secretion; a response that was reduced by the presence of isoflavones, whereas the amino acid pattern resembling the plasma concentration of rats fed SP barely stimulated insulin release. Infusion of isoflavones during the hyperglycemic clamps did not stimulate insulin secretion. Therefore, isoflavones as well as the amino acid pattern seen after SP consumption stimulated insulin secretion to a lower extent, decreasing PPARgamma, GLUT-2, and SREBP-1 expression, and ameliorating hyperinsulinemia observed during obesity.  相似文献   

9.
Manduca sexta L. larvae exhibit broad food acceptance with regard to nutrient content during the first 3 days of the last stadium. Larvae fed diets with a constant combined level of casein and sucrose, but variable ratios, display a linear relationship between protein and carbohydrate intake. Larvae grow best on a diet with equal nutrients, but will consume an excess of one nutrient in order to obtain an adequate amount of the other, as nutrient ratio shifts. Parasitized larvae feed similarly, but the nutrient ratio does not affect growth. Unparasitized larvae regulate intake of protein and carbohydrate when offered choices of protein-biased and carbohydrate-biased diets having combined nutrient levels of 120 g/l, but with variable ratios. Larvae normally consume equal amounts of nutrients, regardless of ratio, and grow similarly. As combined nutrient level is reduced in one diet, larvae abandon regulation and feed randomly. Parasitized larvae offered choice diets with 120 g/l combined nutrients do not regulate nutrient intake. Consumption of nutrients varies widely, but growth is unaffected. Larvae offered choices of diets having equal amounts of casein and sucrose but variable fat (corn oil), fail to regulate fat intake, although both unparasitized and parasitized larvae prefer a diet containing higher fat.  相似文献   

10.
The study investigates the effect of weight-maintaining high-sucrose (HSD) and high-fat (HFD) diets on plasma glucose and insulin concentrations in lean and obese women, and verifies the correlation between insulin profile and body composition. Lean (G1 group, n="6", BMI=21.4 (20.2–22.8) kg/m2) and overweight/obese (G2 group, n=6, BMI 28.6 (25.1–32.1) kg/m2) women participated in the study. HSD (59% total carbohydrate with 23% sucrose; 28% lipid) or HFD (42% total carbohydrate with 1.3% sucrose; 45% lipid) diets were consumed under free-living conditions for 14 days. Anthropometry and body composition were assessed before and after HSD and HFD diets following-up. Fasting and postprandial (at 30, 60, 180 and 240 min) glucose and insulin were determined. HOMA-IR and QUICK index were also calculated. Fasting and postprandial glucose and insulin concentration did not differ significantly between groups or diets. However, there was a positive and significant correlation between plasma fasting and postprandial insulin concentrations and BMI, percentage of total body fat (%TBF) and HOMA-IR index. In addition, carbohydrate and sucrose intake presented a positive and significant correlation with insulin concentration and HOMA-IR at 180 min postprandial, after adjusting for energy intake and % TBF (p<0.05). These results suggest that altering the profile of the macronutrients in the diet can modify glycemia and insulicemia homeostasis, regardless of energy intake and adiposity. On the other hand, the overweight/obese women can maintain a stable metabolic profile with the habitual diet.  相似文献   

11.
We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets — LSO, FO2.5, FO12.5 or FO25 — containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.  相似文献   

12.
Objective: The Protein‐Leverage Hypothesis proposes that humans regulate their intake of macronutrients and that protein intake is prioritized over fat and carbohydrate intake, causing excess energy ingestion when diets contain low %protein. Here we test in a model animal, the mouse: (i) the extent to which intakes of protein and carbohydrate are regulated; (ii) if protein intake has priority over carbohydrates so that unbalanced foods low in %protein leads to increased energy intake; and (iii) how such variations in energy intake are converted into growth and storage. Methods and Procedures: We fed mice one of five isocaloric foods having different protein to carbohydrate composition, or a combination of two of these foods (N = 15). Nutrient intake and corresponding growth in lean body mass and lipid mass were measured. Data were analyzed using a geometric approach for analyzing intake of multiple nutrients. Results: (i) Mice fed different combinations of complementary foods regulated their intake of protein and carbohydrate toward a relatively well‐defined intake target. (ii) When mice were offered diets with fixed protein to carbohydrate ratio, they regulated the intake of protein more strongly than carbohydrate. This protein‐leverage resulted in higher energy consumption when diets had lower %protein and led to increased lipid storage in mice fed the diet containing the lowest %protein. Discussion: Although the protein‐leverage in mice was less than what has been proposed for humans, energy intakes were clearly higher on diets containing low %protein. This result indicates that tight protein regulation can be responsible for excess energy ingestion and higher fat deposition when the diet contains low %protein.  相似文献   

13.
Phenylketonuria (PKU) is caused by a mutation in the phenylalanine (phe) hydroxylase gene and requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to AA formula. Our objective was to compare growth, body composition, and energy balance in Pah(enu2) (PKU) and wild-type mice fed low-phe GMP, low-phe AA, or high-phe casein diets from 3-23 wk of age. The 2 × 2 × 3 design included main effects of genotype, sex, and diet. Fat and lean mass were assessed by dual-energy X-ray absorptiometry, and acute energy balance was assessed by indirect calorimetry. PKU mice showed growth and lean mass similar to wild-type littermates fed the GMP or AA diets; however, they exhibited a 3-15% increase in energy expenditure, as reflected in oxygen consumption, and a 3-30% increase in food intake. The GMP diet significantly reduced energy expenditure, food intake, and plasma phe concentration in PKU mice compared with the casein diet. The high-phe casein diet or the low-phe AA diet induced metabolic stress in PKU mice, as reflected in increased energy expenditure and intake of food and water, increased renal and spleen mass, and elevated plasma cytokine concentrations consistent with systemic inflammation. The low-phe GMP diet significantly attenuated these adverse effects. Moreover, total fat mass, %body fat, and the respiratory exchange ratio (CO(2) produced/O(2) consumed) were significantly lower in PKU mice fed GMP compared with AA diets. In summary, GMP provides a physiological source of low-phe dietary protein that promotes growth and attenuates the metabolic stress induced by a high-phe casein or low-phe AA diet in PKU mice.  相似文献   

14.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

15.
Consumption of a high energy diet, containing high amounts of saturated fat and refined sugar has been associated with impairment of cognitive function in rodents and humans. We sought to contrast the effect of a high fat/cholesterol, low carbohydrate diet and a low fat, high carbohydrate/sucrose diet, relative to a standard low fat, high carbohydrate minipig diet on spatial cognition with regards to working memory and reference memory in 24 male Göttingen minipigs performing in a spatial hole-board discrimination test. We found that both working memory and reference memory were impaired by both diets relative to a standard minipig diet high in carbohydrate, low in fat and sugar. The different diets did not impact levels of brain-derived neurotrophic factor in brain tissue and neither did they affect circulatory inflammation measured by concentrations of C-reactive protein and haptoglobin in serum. However, higher levels of triglycerides were observed for minipigs fed the diets with high fat/cholesterol, low carbohydrate and low fat, high carbohydrate/sucrose compared to minipigs fed a standard minipig diet. This might explain the observed impairments in spatial cognition. These findings suggest that high dietary intake of both fat and sugar may impair spatial cognition which could be relevant for mental functioning in humans.  相似文献   

16.
Eighteen lactating mink raising litters of 6 to 7 kits were fed ad libitum from parturition on diets with 32% of ME derived from protein and decreasing fat:carbohydrate ratios [high fat:low carbohydrate (HFLC): 67:1, medium fat:medium carbohydrate (MFMC): 52:16, low fat:high carbohydrate (LFHC): 37:31]. Four weeks post partum the dams were fitted with a jugular vein catheter, and the experiment started with a 3 hours fasting period, after which the dams were fed 210kJ ME of the experimental diets. Blood samples were collected 10 and 5min before feeding and 30, 60, 90, 120, 150 and 180min postprandially. Two hours postprandially a single dose of 50µCi U-14C-labelled glucose was administered to each dam and blood samples were collected 5, 10, 20, 30, 45 and 60min after the tracer administration. Plasma concentrations of glucose and insulin 30 to 120min postprandially were higher in dams fed the LFHC diet, than in dams fed the HFLC diet, values for dams fed the MFMC diet being intermediate. Plasma glucagon concentrations were not significantly affected by dietary treatment. The glucagon:insulin ratios decreased postprandially in all dams, the response being significant in dams fed the LFHC diet. Plasma concentrations of urea were not significantly affected by dietary treatment. Plasma FFA concentrations tended to increase postprandially in dams fed the HFLC diet. Glucose turnover rates were approximately 4.0% permin in all dams, irrespective of dietary treatment. However, the daily glucose flux was lower in dams fed the HFLC diet than in dams fed the LFHC diet, and tended to be lower than in dams fed the MFMC diet. In conclusion, a dietary protein supply of 32% of ME simultaneously with a carbohydrate supply of 16% or 31% of ME had no adverse effects on glucose homeostasis or glucose metabolism in lactating mink.  相似文献   

17.
The hypothesis was proposed that the carbohydrate in the first diet fed to turkey hatchlings upregulates the glucose transport system. Heavy and light body mass poults were observed to determine differences in glucose transport and carbohydrate digestion. Poults were weighed immediately posthatching. Heavy poults were at least +/-2 S.D. above the mean whereas light poults were at least +/-S.D. below the population mean (62.5 +/- 0.4). Each group was randomly assigned to one of two diets. One diet contained 50% carbohydrate and the remaining diet had 15% carbohydrate. Although the diets were isocaloric, differing carbohydrate (corn starch) and fat (cottonseed oil) content had significant effects on body masses within 3 days. Poults fed low carbohydrate weighed more than those on high carbohydrate perhaps because fat is a preferred energy substrate in the neonatal turkey. Greater carbohydrate in the diet increased glucose uptake and maltase activity compared to diets containing more fat. Heavier poults at hatching remained heavier at 3 days posthatching. No differences between body mass categories were noted in glucose uptake measurements. Thus, differences seen in growth rates may not be attributed to glucose transport in the jejunum. It is concluded that turkeys belong to the class of birds in which the poults respond to more carbohydrate in the diet by increasing plasma T(3) concentrations, upregulating the glucose transport system, and increasing enzymatic activity as with maltase.  相似文献   

18.
The impact of chronic excessive energy intake on protein metabolism is still controversial. Male Wistar rats were fed ad libitum during 5 weeks with either a high‐fat high‐sucrose diet (HF: n = 9) containing 45% of total energy as lipids (protein 14%; carbohydrate 40% with 83.5% sucrose) or a standard diet (controls: n = 10). Energy intake and body weight were recorded. At the end of the experiment, we measured body composition, metabolic parameters (plasma amino acid, lipid, insulin, and glucose levels), inflammatory parameter (plasma α2‐macroglobulin), oxidative stress parameters (antioxidant enzyme activities, lipoperoxidation (LPO), protein carbonyl content in liver and muscle), and in vivo fed–state fractional protein synthesis rates (FSRs) in muscle and liver. Energy intake was significantly higher in HF compared with control rats (+28%). There were significant increases in body weight (+8%), body fat (+21%), renal (+41%), and epidydimal (+28%) fat pads in HF compared with control rats. No effect was observed in other tissue weights (liver, muscle, spleen, kidneys, intestine). Liver and muscle FSRs, plasma levels of lipids, glucose, insulin and α2‐macroglobulin, soleus and liver glutathione reductase and peroxidase acitivities, MnSOD activity, LPO, and protein carbonyl content were not altered by the HF diet. Only soleus muscle and liver Cu/ZnSOD activity and soleus muscle catalase activities were reduced in HF rats compared with control rats. Thus, chronic excessive energy intake and increased adiposity, in the absence of other metabolic alterations, do not stimulate fed‐state tissue protein synthesis rates.  相似文献   

19.
Two feeding experiments were carried out with castrated male pigs weighing between 10 and 30 kg to study acute and persisting dietary effects on growth and on protein and energy metabolism in growing pigs. Pigs were fed semi-synthetic isoenergetic and isonitrogenous diets at 50% protein requirement with either soy protein isolate (SPI) or casein (CAS) as sole protein source. Intake of protein and ME amounted to 9% w/w and 1800 kJ x kg BW (-0.62) x d(-1) in Exp. 1, respectively, and 9% w/w and 1430 kJ x kg BW(-0.62) x d(-1) in Exp. 2. The CAS diet was supplemented by Lys, Met, Thr and Trp. In Exp. 1 (acute effects), 18 pigs received the CAS diet for 24 days (period 1); 9 pigs were then switched to a SPI diet whereas 9 pigs continued on the CAS diet for another 31 days (period 2). In Exp. 2, a third period of 31 days was added in which the SPI group was switched back to CAS diet. The control group was fed on the CAS diet throughout Exp. 2 (86 days). Altogether the majority of parameters were not affected neither comparing SPI with CAS in Exp. 1 nor inspecting possible persistence of effects in Exp. 2. In detail, in Exp. 1 SPI compared to CAS feeding resulted in a lower efficiency of protein utilisation and lower protein retention. Attendant upon the lower protein retention an increased energy retention as fat was only observed in tendency. SPI feeding caused a decreased body weight, thyroid weight and increased hepatic carbohydrate content that persisted after the diet was changed back to CAS (Exp. 2).  相似文献   

20.
Recently we showed that exchanging intact casein with extensively hydrolysed casein in Western diets prevented diet-induced obesity in obesity-prone C57BL/6J mice. To gain further insight into the underlying mechanisms for the metabolic alterations induced by intake of hydrolysed casein, we performed an exploratory investigation using proton NMR spectroscopy, multi-block PCA (MBPCA) and a multi-compartment model including analyses of plasma, urine, faeces and tissue samples from mice fed diets with intact or hydrolysed casein and 16 or 32 energy% protein. The MBPCA superscores showed a clear separation between samples from mice fed intact and hydrolysed casein diets, respectively. Block loadings revealed that fecal fat content was higher, and tissue and plasma lipid levels were lower in mice fed hydrolysed casein diets compared with mice fed intact casein. Amino acid metabolism was also altered by dietary protein form, and levels of branched-chain amino acids were higher in faeces and urine and lower in plasma and spleen in mice fed hydrolysed protein. Moreover, hepatic levels of the sulphur-containing metabolites taurine and glutathione were increased in mice fed hydrolysed casein, and hepatic glycogen amount was increased in mice fed hydrolysed casein. In contrast, the levels of glucose and its metabolite lactate were reduced in faeces, liver and plasma. Taken together, NMR-based metabolomic analyses indicated that pathways within lipid, amino acid and carbohydrate metabolism were altered by intake of hydrolysed casein, and that these alterations are likely to be underlying mechanisms for the observed prevention against diet-induced obesity associated with hydrolysed casein intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号