首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An enzyme thermistor was used to monitor and control the sucrose concentration in a conversion of sucrose to ethanol with immobilized yeast. A continuous stirred tank reactor containing calcium alginate to entrap Saccharomyces cerevisiae was used. The enzyme thermistor was continuously measuring the sucrose concentration in the fermenter with an on-line arrangement giving stable and reproducible heat signals. The control of the sucrose concentration level was performed with an analogue PI-controller.  相似文献   

2.
Process control of different reactor models for continuous production of ethanol from sucrose with immobilized yeast has been studied. An enzyme thermistor with immobilized invertase recorded the concentration of sucrose continuously. Ethanol was recorded by a membrane gas sensor with a SnO(2) semiconductor used as detector. A process computer controlled the substrate feed to keep substrate as well as ethanol concentration at preset values by using algorithms of varying complexity. It was thereby demonstrated that PID regulators as well as more advanced algorithms (Otto-Smith regulator, state feedback from a Kalman filter, and cascade control) are useful alternatives to maintain a constant concentration in the fermentor effluents. The time required for the system to return to predetermined conditions after various kinds of disturbances has been especially studied. It was shown that the more advanced regulator used the shorter time.  相似文献   

3.
We have developed a bioreactor which uses enzyme immobilized within a ceramic membrane support (1 mm thickness). Substrate is forced through the membrane by cross-flow filtration with the reaction taking place during the process of crossing the membrane. The bioreactor is termed forced-flow membrane enzyme reactor, FFMER. Invertase, which uses sucrose to form glucose and fructose, was tested in this system. The immobilized invertase membrane converted 100% of the sucrose in a feed stream made up of a 50% molasses solution. Because molasses contains many substances besides sucrose, this method is applicable to processes using substrates present in impure feeds.  相似文献   

4.
An immobilized multienzyme- and cathodic amperometry-based biosensor for sucrose was constructed for the analysis of food and fermentation samples. The multienzyme system, comprising invertase, mutarotase and glucose oxidase (GOD), was immobilized by using glutaraldehyde as cross-linking agent. Operating parameters of the biosensor for the estimation of sucrose in the range 1–10% were standardized. Response surface methodology (RSM) based on three-factor, three-variable design was used to evaluate the effect of important variables (concentration of enzymes, (varied in the range invertase (10–50 IU), mutarotase (5–105 IU) and GOD (1–9 IU)) on the response of biosensor. In the range of parameters studied, response time decreased with decrease in the invertase and with increase in mutarotase and GOD. Mutarotase concentration above 75 IU was found to result in an increased response time due to inhibition of mutarotase by its product -D-glucose. The optimal conditions achieved for the analysis of sucrose were: invertase 10 IU, mutarotase 40 IU, and GOD 9 IU. With these conditions, the predicted and actual experimental response time values were 2.26 and 2.35 min respectively, showing good agreement.  相似文献   

5.
1. Glucose oxidase (EC 1.1.3.4), amyloglucosidase (EC 3.2.1.3), invertase (EC 3.2.1.26) and beta-galactosidase (EC 3.2.1.23) were covalently attached via glutaraldehyde to the inside surface of nylon tube. 2. The linked enzyme system, comprising invertase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of sucrose. 3. The linked enzyme system, comprising beta-galactosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of lactose. 4. The linked enzyme system, comprising amyloglucosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of maltose. 5. Mixtures of glucose oxidase and amyloglucosidase were immobilized within the same piece of nylon tube and used for the automated determination of maltose. 6. Mixtures of glucose oxidase and invertase were immobilized within the same piece of nylon tube and used for the automated determination of sucrose.  相似文献   

6.
The enzyme thermistor measures the heat produced by the action of an immobilized enzyme on a substrate present in the sample. Its application in analysis of discrete samples, e.g., in clinical chemistry, is well documented, but it has not been used so far for continuous measurements. We decribe here the application of the enzyme thermistor for continuous monitoring and control of enzyme reactors. An enzyme thermistor filled with coimmobilized glucose oxidase and catalase was used to measure the amount of glucose in the outflow from a column reactor containing immobilized lactase acting on a lactose solution pumped through the reactor. The lactose conversion was kept on a constant level, irrespective of the actual enzymatic activity in the reactor, by regulating the flow through the reactor. The experiments were carried out with aqueous solutions of lactose as well as with whey from cow's milk.  相似文献   

7.
Investigations of invertase (EC 3.2.1.26) immobilized inside modified nylon tubes showed that between 4% and 20% (w/w) of the protein exposed to binding sites on the tube was immobilized. An enhanced activity consistent with enzyme purification during immobilization was also evident, suggesting that, in scaled-up commercial applications, nylon tube invertase would be a more economical converter of sucrose than the free enzyme. The quantity and specific activity of the immobilized protein were not stochiometrical with the amount used in the coupling solution and, in the system studied, a concentration of 2 mg ml?1 was optimal. Km and Vmax values confirmed higher rates of immobilized invertase catalysis when the rates of substrate flow through the reactor were higher. Higher rates of substrate flow imply a shortened residence time in the reactor and would lower the fractional conversion per pass of the substrate, reducing the efficiency of the reactor in flow-through situations. Thus, these higher catalysis rates, attributable at the higher flow rates to a reduction of the diffusion barrier between enzyme and substrate, would not translate into improved economy in the commercial flow-through processes at which the reactor is aimed.  相似文献   

8.
Summary -Fructofuranosidase P-1 fromAureobasidium sp. ATCC 20524, which produces a fructo-oligosaccharide (1-kestose) from sucrose, was immobilized covalently onto alkylamine porous silica with glutaraldehyde at high efficiency (44.4%). Optimum pore diameter of porous silica for immobilization of the enzyme was 91.7 nm. The enzymatic profiles of immobilized enzyme were almost identical to the native one except its stabilities to temperature and metal ions were improved. 1-Kestose was produced continuously and selectively from 40% (w/v) sucrose at fast flow rates by a column packed with the immobilized enzyme for up to 26 days, and the effluent concentration of 1-kestose remained in the range 113–135 mg ml–1.  相似文献   

9.
The possibility of using the enzyme thermistor (ET) for the direct determination of kinetic parameters (Km, Ki, Vm) of immobilized enzyme (IME) was evaluated using different preparations of invertase conjugated to bead celluloses. Two different ET columns packed with IME were operated in the mode of a differential enzyme reactor (short length, low substrate conversion). Kinetic parameters of the above IME reactor were computed by a nonlinear curve-fitting procedure. The obtained kinetic parameters were superverified by means of an independent differential reactor (DR) system. This system utilized an indirect postcolumn analytical method based on determination of glucose concentration in the stirred reservoir. Best agreement between the data acquired by direct (ET) and indirect (DR) methods was obtained if the ET column was operated at flow rates within the range of 1.0-1.5 ml min-1 using invertase-cellulose chlorotriazine conjugate. Influence of heat loss and flow nonideality is discussed. The proposed ET method offers a rapid, convenient, and general approach to determination of kinetic constants of IME preparations by omitting postcolumn analytical methods.  相似文献   

10.
Summary Surface of polystyrene beads was modified by poly(phe-lys) for invertase immobilisation. The optimum immobilisation conditions of invertase were; 0.01% (w/v) poly(phe-lys), 2% (v/v) glutaraldehyde at 25 °C and pH 4.5. The kinetics of sucrose hydrolysis by free and immobilised invertase in a batch reactor at pH 4.5 and 55 °C gave Km and Vmax values for sucrose with free and immobilised invertase of 81, 114 mM and 10.1, 9.2 mol glucose/min.mg enzyme, respectively. The deactivation rate constants of free and immobilised invertase were 0.0347 and 0.0098 min–1, respectively.  相似文献   

11.
Abstract

Dates by-products (discarded dates) from the sucrose-rich variety of ‘Deglet Nour’ were used as starting biomass to produce high-fructose syrup (HFS) based on an immobilized invertase process. A novel extracellular thermostable invertase obtained from Aspergillus awamori cultivated in submerged medium was induced with sucrose at 1% and used for this purpose. A zymogram of the crude extract showed the presence of a unique enzyme form that was optimally produced on the 5th day. This enzyme preparation was biochemically characterized and immobilized on acetic acid-solubilized chitosan by covalent binding using glutaraldehyde (Yi = 88%, Ya = 54% and 15.53 U/g). When deployed in a packed bed reactor (PBR), HFS was efficiently and continuously produced from sucrose derived from aqueous date extracts. Feeding with an extract initially containing 139.2 g/L total sugar with 78.6 g/L sucrose at a flow rate of 17 ml/h, 50°C and pH 6 resulted in a conversion factor of 0.95 and a final fructose content in the syrup of 69 g/L.  相似文献   

12.
Glucose, maltose, sucrose, lactose, xylose, sorbose, galactose, fructose and gluconolactone were analyzed by means of immobilized pyranose oxidase as well as by the combination of immobilized glucose oxidase with immobilized glycoamylase, invertase, mutarotase, maltase (α-glucosidase) and glucose isomerase by flow injection analysis (FIA). For the simultaneous analysis of glucose and other sugars three different flow-injection configurations were applied and compared. The average error of prediction of the analyses were better than 3% in model media and better than 6% in yeast extract containing media.  相似文献   

13.
Summary Whole cells of Saccharomyces bayanus, Saccharomyces cerevisiae and Zymomonas mobilis were immobilized by chelation/metal-link processes onto porous inorganic carriers. The immobilized yeast cells displayed much higher sucrose hydrolyzing activities (90–517 U/g) than the bacterial, Z. mobilis, cells (0.76–1.65 U/g). The yeast cells chelated on hydrous metal oxide derivative of pumice stone presented higher initial -d-fructofuranosidase (invertase, EC 3.2.1.26) activity (161–517 U/g) than on other derivatives (90–201 U/g). The introduction of an organic bridge between the cells and the metal activator led to a decrease of the initial activity of the immobilized cells, however S. cerevisiae cells immobilized on the carbonyl derivative of titanium (IV) activated pumice stone, by covalent linkage, displayed a very stable behaviour, which in continuous operation at 30° C show only a slightly decrease on invertase activity for a two month period (half-life=470 days). The continuous hydrolysis of a 2% w/v sucrose solution at 30° C in an immobilized S. cerevisiae packed bed reactor was described by a simple kinetic model developed by the authors (Cabral et al., 1984a), which can also be used to predict the enzyme activity of the immobilized cells from conversion degree data.  相似文献   

14.
The feasibility of immobilizing invertase (β-d-fructofuranosidase; EC 3.2.1.26) from Saccharomyces cerevisiae cells by various methods was examined. The yeast cells were adapted for maximal invertase activity by growth in a medium containing 0.2% glucose and 1% lactate. There was no permeability barrier for the enzyme in the whole cells. Entrapment in acrylamide polymerized by gamma-rays (200 kR) was observed to be most effective, with retention of 85% of the activity. The evaluation of the properties of the immobilized invertase indicated that the kinetic values were not appreciably altered despite a broad pH optimum. The enzyme was more stable to both heat and gamma-radiation. The immobilized cells could be used repeatedly in a packed bed reactor system for inversion of sucrose without observable loss in activity for over one month.  相似文献   

15.
A kinetic model for the reaction sequence catalyzed by coimmobilized invertase and glucose oxidase with a sucrose substrate in a tubular reactor has been developed. The computerized mathematical model employs and orthogonal collection technique for solving oxidase were coimmobilized in poly(2-hydroxyethlmethacrylate) gels and used in a continuous flow packed-bed tubular reactor system. In addition to describing the development of the kinetic model, this article compares experimentally determined reactor effluent concentrations for various sucrose feed solutions to those predicted by the model. Variations between experimental and predicted reactor effluent concentrations were found to be on the micromolar level for sucrose feed concentrations as low as 1.38mM.  相似文献   

16.
Invertase immobilized onto corn grits was utilized in the hydrolysis of highly concentrated sucrose solutions producting liquid sugar solutions containing glucose and fructose. Comparisons of conversion efficiencies of this immobilized invertase in a continuous stirredtank reactor and a plug-flow reactor indicated that the plug-flow reactor has an higher efficiency. Continuous sucrose hydrolysis was then performed in 0.1- and 1-L tubular reactors. This tenforld scaling-up was achieved without any noticeable loss in efficiency. This process thus was scaled-up to a 17.6-L pilot reactor set in a cane sugar refinery. This reactor was fed with highly concentrated sucrose solutions [71% (w/w)] to produce invert sugar syrup with the desired inversion degree. It allows a productivity equal to 9.1 kg sucrose hydrolyzed/h in the case of a 69% (w/w) sucrose initial concentration with a 72% conversion rate.  相似文献   

17.
A fast, sensitive, interference-free, single enzyme single reagent glucose biosensor, operated in flow injection analysis (FIA) mode, was developed. The method used involved formation of colored complex of titanium sulfate reagent with the peroxide generated by glucose oxidase immobilized in a packed bed reactor. The color developed was detected spectrophotometrically in a flow cuvette. The system could measure down to 0.5 mg glucose l–1 and the response was reproducible and linear in the range 1 mg l–1 to 100 mg l–1. The analysis time for a 500 l sample was 35 s and was free of interference from a number of substances tested. Analysis results using an off-line batch kit were observed to be in agreement with the developed system for determination of glucose in blood plasma samples.  相似文献   

18.
A new technique using chitosan as support for covalent coupling of invertase via carbohydrate moiety improved the activity and thermal stability of immobilized invertase. The best preparation of immobilized invertase retained 91% of original specific activity (412 U mg–1). The half-life at 60°C was increased from 2.3 h (free invertase) to 7.2 h (immobilized invertase). In contrast, the immobilization of invertase via protein moiety on chitosan or using Sepharose as support resulted in less thermostable preparations. Additionally, immobilization of invertase on both supports caused the optimal reaction pH to shift from 4.5 to 2.5 and the substrate (sucrose) concentration for maximum activity to increase from 0.5 M to 1.0 M.  相似文献   

19.
Yeast invertase was immobilized on polyethyleneimine-coated cotton thread by adsorption followed by crosslinking with glutaraldehyde. The thread-bound invertase was used as an easily retrievable system for the hydrolysis of 80% w/v commercial sucrose syrups. The immobilized enzyme was stable for over 90 days to a temperature of 50 degrees C, only when stored in 80% sucrose solution. Above this temperature, inactivation of enzyme was observed. The cotton threads were used in a batch reactor for hydrolysis of sucrose in about 30 batches carried out over a period of 50 days without loss in activity. The threads could also be used in a packed bed reactor (1.51) for 97% hydrolysis of 80% sucrose syrups at 50 degrees C at a rate of about 360 kg per month for a period of 3 months.  相似文献   

20.
Invertase was ionically immobilized on the poly(ethylene-co-vinyl alcohol) hollow fiber inside surface, which was aminoacetalized with 2-dimethylaminoacetaldehyde dimethyl acetal. Immobilization and enzyme reaction were carried out by letting the respective solutions pass or circulate through the inside of the hollow fiber, and the activity of invertase was determined by the amount of glucose produced enzymatically from sucrose. Immobilization conditions were examined with respect to the enzyme concentration and to the time, and consequently the preferable conditions at room temperature were found to be 5 mug/mL of enzyme concentration and 4 h of immobilization time. Under those conditions the immobilization yield and the ratio of the activity of the immobilized invertase to that of the native one were 89 and 80%, respectively. For both repeating and continuous usages, the activity fell to ca. 60% of the initial activity in the early stage and after that almost kept that value. The apparent Michaelis constant K(m) (') for the immobilized invertase decreased with increasing the flow rate of the substrate solution, to be close to the value for the native one. Furthermore, the possibility of the separation of the enzymatically formed glucose from the reaction mixture through the hollow fiber membrane was preliminarily examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号