首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) catalytic subunit with multiple regulatory roles thought to be specified by association with different cyclin partners (Pcls). Pcl10p is one of four Pcls with little sequence similarity to cyclins involved in cell cycle control. It has been implicated in specifying the phosphorylation of glycogen synthase (Gsy2p). We report that recombinant Pho85p and Pcl10p produced in Escherichia coli reconstitute an active Gsy2p kinase in vitro. Gsy2p phosphorylation required Pcl10p, occurred at physiologically relevant sites, and resulted in inactivation of Gsy2p. The activity of the reconstituted enzyme was even greater than Pho85p-Pcl10p isolated from yeast, and we conclude that, unlike many Cdks, Pho85p does not require phosphorylation for activity. Pcl10p formed complexes with Gsy2p, as judged by (i) gel filtration of recombinant Pcl10p and Gsy2p, (ii) coimmunoprecipitation from yeast cell lysates, and (iii) enzyme kinetic behavior consistent with Pcl10p binding the substrate. Synthetic peptides modeled on the sequences of known Pho85p sites were poor substrates with high K(m) values, and we propose that Pcl10p-Gsy2p interaction is important for substrate selection. Gel filtration of yeast cell lysates demonstrated that most Pho85p was present as a monomer, although a portion coeluted in high-molecular-weight fractions with Pcl10p and Gsy2p. Overexpression of Pcl10p sequestered most of the Pho85p into association with Pcl10p. We suggest a model for Pho85p function in the cell whereby cyclins like Pcl10p recruit Pho85p from a pool of monomers, both activating the kinase and targeting it to substrate.  相似文献   

3.
Sphingoid long-chain base 1-phosphates (LCBPs) act as bioactive lipid molecules in eukaryotic cells. In yeast, LCBPs are synthesized mainly by the long-chain base kinase Lcb4p. Until now, the regulatory mechanism for Lcb4p has been unclear. In the present study, we found that Lcb4p is post-translationally modified by phosphorylation. Using a protein kinase mutant yeast collection, we further demonstrated that the cyclin-dependent kinase Pho85p is involved in this phosphorylation. Pho85p functions in a number of cellular processes, especially in response to environmental changes. Two of 10 Pho85p cyclins, Pcl1p and Pcl2p had overlapping functions in the phosphorylation of Lcb4p. Site-directed mutagenesis identified the phosphorylation sites in Lcb4p as Ser(451) and Ser(455). Additionally, pulse-chase experiments revealed that Lcb4p is degraded via the ubiquitin-dependent pathway. The protein was stabilized in Deltapho85 cells, suggesting that phosphorylation acts as a signal for the degradation. Lcb4p is down-regulated in the stationary phase of cell growth, and both phosphorylation and ubiquitination appear to be important for this process. Moreover, we demonstrated that Lcb4p is delivered to the vacuole for degradation via the multivesicular body. Since forced accumulation of LCBPs results in prolonged growth during the stationary phase, down-regulation of Lcb4p may be physiologically important for proper cellular responses to nutrient deprivation.  相似文献   

4.
5.
6.
7.
Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho85-Pcl10 complex is a key regulator of glycogen metabolism by phosphorylating the substrate Gsy2, the predominant, nutritionally regulated form of glycogen synthase. Here we report the crystal structures of Pho85-Pcl10 and its complex with the ATP analog, ATPγS. The structure solidified the mechanism for bypassing CDK phosphorylation to achieve full catalytic activity. An aspartate residue, invariant in all Pcls, acts as a surrogate for the phosphoryl adduct of the phosphorylated, fully activated CDK2, the prototypic cell cycle CDK, complexed with cyclin A. Unlike the canonical recognition motif, SPX(K/R), of phosphorylation sites of substrates of several cell cycle CDKs, the motif in the Gys2 substrate of Pho85-Pcl10 is SPXX. CDK5, an important signal transducer in neural development and the closest known functional homolog of Pho85, does not require phosphorylation either, and we found that in its crystal structure complexed with p25 cyclin a water/hydroxide molecule remarkably plays a similar role to the phosphoryl or aspartate group. Comparison between Pho85-Pcl10, phosphorylated CDK2-cyclin A, and CDK5-p25 complexes reveals the convergent structural characteristics necessary for full kinase activity and the variations in the substrate recognition mechanism.  相似文献   

8.
9.
The budding yeast Glc7 serine/threonine protein phosphatase-1 is regulated by Glc8, the yeast ortholog of mammalian phosphatase inhibitor-2. In this work, we demonstrated that similarly to inhibitor-2, Glc8 function is regulated by phosphorylation. The cyclin-dependent protein kinase, Pho85, in conjunction with the related cyclins Pcl6 and Pcl7 comprise the major Glc8 kinase in vivo and in vitro. Several glc7 mutations are dependent on the presence of Glc8 for viability. For example, glc7 alleles R121K, R142H, and R198D are lethal in combination with a glc8 deletion. We found that glc7-R121K is lethal in combination with a pho85 deletion. This finding indicates that Pho85 is the sole Glc8 kinase in vivo. Furthermore, glc7-R121K is also lethal when combined with deletions of pcl6, plc7, pcl8, and pcl10, indicating that these related cyclins redundantly activate Pho85 for Glc8 phosphorylation in vivo. In vitro kinase assays and genetic results indicate that Pho85 cyclins Pcl6 and Pcl7 comprise the predominant Glc8 kinase.  相似文献   

10.
11.
In the yeast Saccharomyces cerevisiae, Sic1, an inhibitor of Clb-Cdc28 kinases, must be phosphorylated and degraded in G1 for cells to initiate DNA replication, and Cln-Cdc28 kinase appears to be primarily responsible for phosphorylation of Sic1. The Pho85 kinase is a yeast cyclin-dependent kinase (Cdk), which is not essential for cell growth unless both CLN1 and CLN2 are absent. We demonstrate that Pho85, when complexed with Pcl1, a G1 cyclin homologue, can phosphorylate Sic1 in vitro, and that Sic1 appears to be more stable in pho85Δ cells. Three consensus Cdk phosphorylation sites present in Sic1 are phosphorylated in vivo, and two of them are required for prompt degradation of the inhibitor. Pho85 and other G1 Cdks appear to phosphorylate Sic1 at different sites in vivo. Thus at least two distinct Cdks can participate in phosphorylation of Sic1 and may therefore regulate progression through G1.  相似文献   

12.
13.
The yeast amphiphysin homologue Rvs167p plays a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. Rvs167p is a phosphoprotein in vegetatively growing cells and shows increased phosphorylation upon treatment with mating pheromone. Previous work has shown that Rvs167p can be phosphorylated in vitro by the cyclin-dependent kinase Pho85p complexed with its cyclin Pcl2p. Using chymotryptic phosphopeptide mapping, we have identified the sites on which Rvs167p is phosphorylated in vitro by Pcl2p-Pho85p. We have shown that these same sites are phosphorylated in vivo during vegetative growth and that phosphorylation at two of these sites is Pcl-Pho85p dependent. In cells treated with mating pheromone, the MAP kinase Fus3p is needed for full phosphorylation of Rvs167p. Functional genomics and genetics experiments revealed that mutation of other actin cytoskeleton genes compromises growth of a strain in which phosphorylation of Rvs167p is blocked by mutation. Phosphorylation of Rvs167p inhibits its interaction in vitro with Las17p, an activator of the Arp2/3 complex, as well as with a novel protein, Ymr192p. Our results suggest that phosphorylation of Rvs167p by a cyclin-dependent kinase and by a MAP kinase is an important mechanism for regulating protein complexes involved in actin cytoskeleton function.  相似文献   

14.
15.
Mouse cyclin-dependent kinase (Cdk) 5 and yeast Pho85 kinase share similarities in structure as well as in the regulation of their activity. We found that mouse Cdk5 kinase produced in pho85Delta mutant cells could suppress some of pho85Delta mutant phenotypes including failure to grow on nonfermentable carbon sources, morphological defects, and growth defect caused by Pho4 or Clb2 overproduction. We also demonstrated that Cdk5 coimmunoprecipitated with Pho85-cyclins including Pcl1, Pcl2, Pcl6, Pcl9, and Pho80, and that the immunocomplex could phosphorylate Pho4, a native substrate of Pho85 kinase. Thus mouse Cdk5 is a functional homologue of yeast Pho85 kinase.  相似文献   

16.
17.
18.
19.
Cak1 Is Required for Kin28 Phosphorylation and Activation In Vivo   总被引:11,自引:8,他引:3       下载免费PDF全文
Complete activation of most cyclin-dependent protein kinases (CDKs) requires phosphorylation by the CDK-activating kinase (CAK). In the budding yeast, Saccharomyces cerevisiae, the major CAK is a 44-kDa protein kinase known as Cak1. Cak1 is required for the phosphorylation and activation of Cdc28, a major CDK involved in cell cycle control. We addressed the possibility that Cak1 is also required for the activation of other yeast CDKs, such as Kin28, Pho85, and Srb10. We generated three new temperature-sensitive cak1 mutant strains, which arrested at the restrictive temperature with nonuniform budding morphology. All three cak1 mutants displayed significant synthetic interactions with loss-of-function mutations in CDC28 and KIN28. Loss of Cak1 function reduced the phosphorylation and activity of both Cdc28 and Kin28 but did not affect the activity of Pho85 or Srb10. In the presence of the Kin28 regulatory subunits Ccl1 and Tfb3, Kin28 was phosphorylated and activated when coexpressed with Cak1 in insect cells. We conclude that Cak1 is required for the activating phosphorylation of Kin28 as well as that of Cdc28.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号