首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flavodoxin-like domain, missing in the three-dimensional structure of the monomeric, simplified model of the Escherichia coli sulfite reductase flavoprotein component (SiR-FP), has now been expressed independently. This 168 amino acid protein was named SiR-FP18 with respect to its native molecular weight and represents the FMN-binding domain of SiR-FP. This simplified biological object has kept the main characteristics of its counterpart in the native protein. It could incorporate FMN exclusively and stabilize a neutral air-stable semiquinone radical. Both the radical and the fully reduced forms of SiR-FP18 were able to transfer their electrons to DCPIP or cytochrome c quantitatively. SiR-FP18 was able to form a highly stable complex with SiR-HP, the hemoprotein component of the sulfite reductase containing an iron-sulfur cluster coupled to a siroheme. In agreement with the postulated catalytic cycle of SiR-FP, only the fully reduced form of SiR-FP18 could transfer one electron to SiR-HP, the transferred electron being localized exclusively on the heme. As isolated SiR-FP18 has kept the main characteristics of the FMN-binding domain of the native protein, a structural analysis by NMR was performed in order to complete the partial structure obtained previously. Structural modeling was performed using sequence homologues, cytochrome P450 reductase (CPR; 29% identity) and bacterial cytochrome P450 (P450-BM3; 26% identity), as conformational templates. These sequences were anchored using common secondary structural elements identified from heteronuclear NMR data measured on the protein backbone. The resulting structural model was validated, and subsequently refined using residual (C(alpha)-C', N-H(N), and C'-H(N)) dipolar couplings measured in an anisotropic medium. The overall fold of SiR-FP18 is very similar to that of bacterial flavodoxins and of the flavodoxin-like domain in CPR or P450-BM3.  相似文献   

2.
Escherichia coli NADPH-sulfite reductase (SiR) is a 780 kDa multimeric hemoflavoprotein composed of eight alpha-subunits (SiR-FP) and four beta-subunits (SiR-HP) that catalyses the six electron reduction of sulfite to sulfide. Each beta-subunit contains a Fe4S4 cluster and a siroheme, and each alpha-subunit binds one FAD and one FMN as prosthetic groups. The FAD gets electrons from NADPH, and the FMN transfers the electrons to the metal centers of the beta-subunit for sulfite reduction. We report here the 1.94 A X-ray structure of SiR-FP60, a recombinant monomeric fragment of SiR-FP that binds both FAD and FMN and retains the catalytic properties of the native protein. The structure can be divided into three domains. The carboxy-terminal part of the enzyme is composed of an antiparallel beta-barrel which binds the FAD, and a variant of the classical pyridine dinucleotide binding fold which binds NADPH. These two domains form the canonic FNR-like module, typical of the ferredoxin NADP+ reductase family. By analogy with the structure of the cytochrome P450 reductase, the third domain, composed of seven alpha-helices, is supposed to connect the FNR-like module to the N-terminal flavodoxine-like module. In four different crystal forms, the FMN-binding module is absent from electron density maps, although mass spectroscopy, amino acid sequencing and activity experiments carried out on dissolved crystals indicate that a functional module is present in the protein. Our results clearly indicate that the interaction between the FNR-like and the FMN-like modules displays lower affinity than in the case of cytochrome P450 reductase. The flexibility of the FMN-binding domain may be related, as observed in the case of cytochrome bc1, to a domain reorganisation in the course of electron transfer. Thus, a movement of the FMN-binding domain relative to the rest of the enzyme may be a requirement for its optimal positioning relative to both the FNR-like module and the beta-subunit.  相似文献   

3.
NADPH-sulfite reductase flavoprotein (SiR-FP) was purified from a Salmonella typhimurium cysG strain that does not synthesize the hemoprotein component of the sulfite reductase holoenzyme. cysJ, which codes for SiR-FP, was cloned from S. typhimurium LT7 and Escherichia coli B, and both genes were sequenced. Physicochemical analyses and deduced amino acid sequences indicate that SiR-FP is an octamer of identical 66-kDa peptides and contains 4 FAD and 4 FMN per octamer. Potentiometric titrations of SiR holoenzyme, SiR-FP, and FMN-depleted SiR-FP yielded the following redox potentials for the prosthetic groups at pH 7.7: E'1 (FMNH./FMN) = -152 mV; E'2 (FMNH2/FMNH.) = -327 mV; E'3 (FADH./FAD) = -382 mV; E'4 (FADH2/FADH.) = -322 mV. Microcoulometric titration of SiR-FP at 25 degrees C yielded data which were in full agreement with these potentials. Spectroscopic and catalytic studies of native SiR-FP and of SiR-FP depleted of FMN support the following electron flow sequence: NADPH----FAD----FMN. FMN can then contribute electrons to the hemoprotein component of sulfite reductase, as well as to cytochrome c and various diaphorase acceptors. The FMN is postulated to cycle between the FMNH2 and FMNH. oxidation states during catalysis; in this sense SiR-FP shares a catalytic mechanism with NADPH-cytochrome P-450 oxidoreductase. SiR-FP domains involved in binding FMN, FAD, and NADPH are proposed from amino acid sequence homologies with Desulfovibrio vulgaris flavodoxin (Dubourdieu, M., and Fox, J.L. (1977) J. Biol. Chem. 252, 1453-1463) and spinach ferredoxin-NADP+ oxidoreductase (Karplus, P.A., Walsh, K.A., and Herriott, J. R. (1984) Biochemistry 23, 6576-6583). Comparison of the deduced amino acid sequences of SiR-FP and NADPH-cytochrome P-450 oxidoreductase (Porter, T. D., and Kasper, C.B. (1985) Proc. Natl. Acad. Sci. U. S.A. 82, 973-977) also showed identities that suggest these two proteins are descended from a common precursor, which contained binding regions for both FMN and FAD.  相似文献   

4.
Escherichia coli sulfite reductase (SiR) is a large and soluble enzyme with an alpha(8)beta(4) quaternary structure. Protein alpha (or sulfite reductase flavoprotein) contains both FAD and FMN, whereas protein beta (or sulfite reductase hemoprotein (SiR-HP)) contains an iron-sulfur cluster coupled to a siroheme. The enzyme is set up to arrange the redox cofactors in a FAD-FMN-Fe(4)S(4)-Heme sequence to make an electron pathway between NADPH and sulfite. Whereas alpha spontaneously polymerizes, we have been able to produce SiR-FP60, a monomeric but fully active truncated version of it, lacking the N-terminal part (Zeghouf, M., Fontecave, M., Macherel, D., and Covès, J. (1998) Biochemistry 37, 6114-6123). Here we report the cloning, overproduction, and characterization of the beta subunit. Pure recombinant SiR-HP behaves as a monomer in solution and is identical to the native protein in all its characteristics. Moreover, we demonstrate that the combination of SiR-FP60 and SiR-HP produces a functional 1:1 complex with tight interactions retaining about 20% of the activity of the native SiR. In addition, fully active SiR can be reconstituted by incubation of the octameric sulfite reductase flavoprotein with recombinant SiR-HP. Titration experiments and spectroscopic properties strongly suggest that the holoenzyme should be described as an alpha(8)beta(8) with equal amounts of alpha and beta subunits and that the alpha(8)beta(4) structure is probably not correct.  相似文献   

5.
J D Otvos  D P Krum  B S Masters 《Biochemistry》1986,25(22):7220-7228
Microsomal NADPH-cytochrome P-450 reductase is the only mammalian flavoprotein known to contain both FAD and FMN as prosthetic groups. The discovery of the air-stable semiquinone [Masters, B. S. S., Kamin, H., Gibson, Q. H., & Williams, C. H., Jr. (1965) J. Biol. Chem. 240, 921-931] and its identification as a one-electron-reduced state [Iyanagi, T., & Mason, H. S. (1973) Biochemistry 12, 2297-2308] have engendered a number of studies to elucidate its unique catalytic mechanism. In this paper, 31P NMR spectroscopy is utilized to probe the localization of the free radical in this air-stable semiquinone form and to ascertain the environments of the FAD and FMN prosthetic groups as affected by the paramagnetic ion Mn(II). Consistent with conclusions drawn from studies utilizing FMN-free reductase [Vermilion, J. L., & Coon, M. J. (1978) J. Biol. Chem. 253, 8812-8819], the free radical was shown to reside on the FMN moiety by the broadening of its characteristic resonance in the 31P NMR spectrum. In addition, the effect of the paramagnetic ion Mn(II) was determined on the four resonances attributable to FAD and FMN and the additional ones contributed by NADP+ resulting from the oxidation of the physiological reductant NADPH. The addition of Mn(II) had little effect on the line widths of the FMN and FAD signals but resulted in an increase in their intensities due to a decrease in T1 relaxation times.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The interaction of recombinant house fly (Musca domestica) P450 reductase with NADPH and the role of the FMN semiquinone in reducing cytochrome c have been investigated. House fly P450 reductase can rapidly oxidize only one molecule of NADPH, whereas the rate of oxidation of a second molecule of NADPH is too slow to account for the observed rates of catalysis. This demonstrates that house fly P450 reductase does not require a priming reaction with NADPH for catalysis. Kinetics of cytochrome c reduction and EPR spectroscopy revealed that the enzyme forms two types of neutral FMN semiquinone. One serves as the catalytic intermediate of cytochrome c reduction, and another one is an 'airstable' semiquinone, which reduces cytochrome c 3000 times more slowly. The results show that the reduction state of the house fly P450 reductase during catalysis cycles in a 0-2-1-0 sequence.  相似文献   

7.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

8.
Fluorescence quenching and energy-transfer studies have been carried out to determine the position of FAD and FMN groups of NADPH-cytochrome P450 reductase and of the heme and substrate groups of cytochrome P450 with respect to the lipid/water interphase. Quenching by iodine of the fluorescence of the flavins of the reductase shows a biphasic pattern, due to the different accessibility of FAD and FMN to the solvent with Stern-Volmer constants of 7.9 x 10(-4) and 2.7 x 10(-3) mM-1, respectively. Both prosthetic groups appear to be buried within the three-dimensional structure of the native reductase, FAD more deeply embedded than FMN and with a relative contribution to the total fluorescence of flavins of 84% (FAD) and 16% (FMN). The lack of significant energy transfer (less than 5%) from FAD+FMN to the rhodamine group of the N-labeled phosphatidylethanolamine incorporated in membranes reconstituted with NADPH-cytochrome P450 reductase and phosphatidylcholine points out that both groups are located at a distance greater than 5 nm from the lipid/water interphase. Steady-state fluorescence intensity and anisotropy data obtained with native and FMN-depleted NADPH-cytochrome P450 reductase show that energy transfer between both prosthetic groups occurs in the native reductase with an efficiency of ca. 31%, consistent with a separation between these groups of 2 nm as suggested earlier by Bastiaens, P. I. H., Bonants, P. J. M., Müller, F., & Visser, A. J. W. G. [(1989) Biochemistry 28, 8416-8425] from time-resolved fluorescence anisotropy measurements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c.  相似文献   

10.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

11.
The membrane-bound flavoprotein NADPH:cytochrome P-450 (cytochrome c) reductase, that functions in electron transfer to cytochrome P-450 mono-oxygenases, was purified from a cell suspension culture of the higher plant Catheranthus roseus . Anti-serum raised against the purified protein was found to inhibit NADPH:cytochrome c reductase activity as well as the activities of the cytochrome P-450 enzymes geraniol 10-hydroxylase and trans -cinnamate 4-hydroxylase, which are involved in alkaloid biosynthesis and phenylpropanoid biosynthesis, respectively. Immunoscreening of a C. roseus cDNA expression library resulted in the isolation of a partial NADPH: cytochrome P-450 reductase cDNA clone, which was identified on the basis of sequence homology with NADPH:cytochrome P-450 reductases from yeast and animal species. The identity of the cDNA was confirmed by expression in Escherichia coli as a functional protein capable of NADPH-dependent reduction of cytochrome c and neotetrazolium, two in vitro substrates for the reductase. The N-terminal sequence of the reductase, which was not present in the cDNA clone, was determined from a genomic NADPH: cytochrome P-450 reductase clone. It was demonstrated that the reductase probably is encoded by a single copy gene. A sequence comparison of this plant NADPH:cytochrome P-450 reductase with the corresponding enzymes from yeast and animal species showed that functional domains involved in binding of the cofactors FMN, FAD and NADPH are highly conserved between all kingdoms. In C. roseus cell cultures a rapid increase of the reductase steady state mRNA level was observed after the addition of fungal elicitor preparations that are known to induce cytochrome P-450-dependent biosynthetic pathways.  相似文献   

12.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

13.
Cytochrome P450BM-3 is a self-sufficient bacterial protein containing three naturally fused domains which bind either heme, FMN, or FAD. Resolution of protein and FMN from the isolated FMN-containing domain of cytochrome P450Betamicro-3 was accomplished using trichloroacetic acid. The apoprotein thus prepared was shown to rebind FMN to regenerate the original holoprotein as indicated by both spectroscopy and activity measurements. To better understand how the protein/flavin interaction might contribute to reactivity, the association process was studied in detail. Fluorescence quenching was used to measure a dissociation constant of the flavin-protein complex of 31 nM, comparable to FMN-containing proteins of similar reactivity and higher than that of flavodoxins. Stopped-flow kinetics were performed, and a multistep binding process was indicated, with an initial k(on) value of 1.72 x 10(5) M(-)(1) s(-)(1). Preparation of the apoprotein allowed substitution of flavin analogues for the native FMN cofactor using 8-chloro-FMN and 8-amino-FMN. Both were found to bind efficiently to the protein with only minor variations in affinity. Reductive titrations established that, as in the native FMN-containing FMN-binding domain, the 8-amino-FMN-substituted domain does not produce a stable one-electron-reduced species during titration with sodium dithionite. The 8-chloro-FMN-substituted domain, however, had sufficiently altered redox properties to form a stable red anionic semiquinone. The 8-chloro-FMN-substituted FMN-binding domain was shown in reconstituted systems to retain most of the cytochrome c reductase activity of the native domain but only a very small amount of palmitic acid hydroxylase activity. The 8-amino-FMN-substituted FMN-binding domain showed no palmitic acid hydroxylase activity and only 30% of the native cytochrome c reductase activity, demonstrating the importance of thermodynamics to the mechanism of this protein.  相似文献   

14.
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed‐function oxidase system that participates in the metabolism of endo‐ and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD‐to‐FMN, but not FMN‐to‐P450, electron transfer. Here, we report the 2.5 Å resolution crystal structure of a functionally competent yeast–human chimeric CPR in an open conformation, compatible with FMN‐to‐P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 Å.  相似文献   

15.
NADPH-cytochrome P450 reductase transfers two reducing equivalents derived from a hydride ion of NADPH via FAD and FMN to the large family of microsomal cytochrome P450 monooxygenases in one-electron transfer steps. The mechanism of electron transfer by diflavin reductases remains elusive and controversial. Here, we determined the crystal structure of truncated yeast NADPH-cytochrome P450 reductase, which is functionally active toward its physiological substrate cytochrome P450, and discovered a second FMN binding site at the interface of the connecting and FMN binding domains. The two FMN binding sites have different accessibilities to the bulk solvent and different amino acid environments, suggesting stabilization of different electronic structures of the reduced flavin. Since only one FMN cofactor is required for function, a hypothetical mechanism of electron transfer is discussed that proposes shuttling of a single FMN between these two sites coupled with the transition between two semiquinone forms, neutral (blue) and anionic (red).  相似文献   

16.
Summary

The role of the prosthetic groups (FAD and FMN) of NADPH-cytochrome P450 reductase (P450 reductase)in 3-hydroxyanthranilamide (3-OH An.Amide)-catalyzed, NADPH-dependent superoxide anion (O2-) production via the reductase was examined using the native and FMN-depleted preparations of P450 reductase which was partially purified from rat liver microsomes. NADPH-dependent O2-production by the FMN-depleted preparation was about 10% of that by the native preparation. 3-OH An. Amide-catalyzed, NADPH-dependent O2-production by the FMN-depleted preparation was less than 10% of that by the native preparation. FMN supplementation returned O2-production to near normal. We observed the same results for NADPH oxidation and hydrogen peroxide formation. O2-production, NADPH oxidation, and hydrogen peroxide formation were inhibited by native superoxide dismutase (SOD), but not by boiled, denatured SOD. These results indicate that the prosthetic groups, especially FMN, of P450 reductase play a critical role in 3-OH An.Amide-catalyzed, NADPH-dependent O2-production via the reductase.  相似文献   

17.
A flavoprotein catalyzing the reduction of cytochrome c by NADPH was solubilized and purified from microsomes of yeast grown anaerobically. The cytochrome c reductase had an apparent molecular weight of 70,000 daltons and contained one mole each of FAD and FMN per mole of enzyme. The reductase could reduce some redox dyes as well as cytochrome c, but could not catalyze the reduction of cytochrome b5. The reductase preparation also catalyzed the oxidation of NADPH with molecular oxygen in the presence of a catalytic amount of 2-methyl-1,4-naphthoquinone (menadione). The Michaelis constants of the reductase for NADPH and cytochrome c were determined to be 32.4 and 3.4 micron M, respectively, and the optimal pH for cytochrome c reduction was 7.8 to 8.0. It was concluded that yeast NADPH-cytochrome c reductase is in many respects similar to the liver microsomal reductase which acts as an NADPH-cytochrome P-450 reductase [EC 1.6.2.4].  相似文献   

18.
NADPH-cytochrome c reductase was purified to electrophoretic homogeneity from detergent solubilized sheep lung microsomes. The specific activity of the purified enzyme ranged from 56 to 67 mumol cytochrome c reduced/min/mg protein and the yield was 48-52% of the initial activity in lung microsomes. The reductase had Mr of 78,000 and contained 1 mol each of FAD and FMN. Km values obtained in 0.3 M phosphate buffer, pH 7.8 at 37 degrees C for NADPH and cytochrome c were 11.1 +/- 0.70 microM and 20.0 +/- 2.15 microM. Lung reductase was inhibited by its substrate, cytochrome c when its concentration was above 160 microM. The lung reductase exhibited a ping-pong type kinetic mechanism for NADPH mediated cytochrome c reduction. Purified lung reductase was biocatalytically active in supporting benzo(a)pyrene hydroxylation reaction when coupled with lung cytochrome P-450 and lipid.  相似文献   

19.
The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus?metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 μM and K(m[NADH]) = 399.1 ± 52.1 μM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.  相似文献   

20.
NADPH-cytochrome P-450 reductase with capacity to support cytochrome P-450-dependent drug metabolism and to reduce artificial electron acceptors has been purified to apparent homogeneity by solubilization with Renex 690 and chromatography on DEAE-Sephadex, Agarose and QAE-Sephadex. The purified protein migrates as a single band on native and SDS-polyacrylamide gel electrophoresis, exhibits a minimum molecular weight of 80,000 daltons and contains 1 molecule each of FAD and FMN per 80,000 molecular weight. The specific activity for cytochrome c as electron acceptor is 48.8 μmoles per min and for substrate hydroxylation of benzphetamine measured as NADPH oxidation in the presence of cytochrome P-450 and phosphatidylcholine is 2.5 μmoles per min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号