首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Keratinocyte growth factor (KGF) and its receptor are involved in various types of epithelial repair processes. To gain insight into the molecular mechanisms of KGF action in the healing skin wound, we searched for genes which are regulated by this factor in cultured keratinocytes. Using the PCR-select technology we constructed a subtractive cDNA library. One of the KGF-regulated genes that we identified was shown to encode caveolin-1, a major component of caveolar membranes. Caveolin-1 is involved in a wide variety of cellular processes, particularly in the regulation of various signal transduction pathways. Caveolin-1 mRNA levels increased in cultured keratinocytes after KGF treatment. By in situ hybridization and immunohistochemistry we found a strong expression of caveolin-1 in the KGF-responsive basal keratinocytes of the epidermis and the hyperproliferative epithelium of the wound as well as in endothelial cells and in other cells of the granulation tissue. In 13-day wounds expression of caveolin-1 mRNA was restricted to the regenerated dermis. In addition to caveolin-1, the mRNA expression of caveolin-2, a second member of the caveolin family, was also induced in keratinocytes after stimulation with KGF but also with other growth factors and cytokines. In contrast to caveolin-1, caveolin-2 protein was expressed in all layers of the normal epidermis and in the suprabasal layers of the hyperproliferative wound epithelium. These results demonstrate a differential expression of caveolin-1 and -2 in proliferating versus differentiating keratinocytes.  相似文献   

3.
Purpose of this work was to test the effect of tumour-cell-derived keratinocyte growth factor (KGF) or recombinant KGF (palifermin) on cell proliferation and radiation response of human HNSCC cells and normal keratinocytes in vitro. Four tumour cell cultures derived from head and neck squamous cell carcinomas, primary keratinocytes, and immortalized keratinocytes were analysed. Fibroblasts, the natural source of KGF protein, served as controls. KGF expression was observed in primary and immortalized keratinocytes, fibroblasts, and in tumour cells, while significant KGF receptor expression was only found in keratinocytes. Recombinant KGF as well as tumour-cell-derived KGF caused a significant growth stimulation and radioprotection in keratinocytes, which was abolished by a neutralizing anti-KGF antibody. This indicates that tumour-cell-derived KGF is biologically active. In the tumour cell lines, no significant growth stimulation was induced by recombinant KGF, and the neutralizing antibody did not influence tumour cell growth or radiation response. Our results indicate that the normal, paracrine KGF regulatory mechanisms, which are based on KGF receptor expression, are lost in malignant cells, with the consequence of irresponsiveness of the tumour cells to exogenous KGF. In face of the amelioration of the radiation response of normal epithelia, demonstrated in various clinical and various preclinical animal studies, recombinant KGF represents a candidate for the selective protection of normal epithelia during radio(chemo) therapy of squamous cell carcinoma.  相似文献   

4.
Transforming growth factor beta (TGF-beta) is a multifunctional cytokine which plays an important role in cutaneous wound repair. To gain insight into the mechanisms of action of this growth and differentiation factor in the skin, we searched for genes which are regulated by TGF-beta1 in cultured HaCaT keratinocytes. Using the differential display RT-PCR technology we identified a gene which was strongly downregulated by TGF-beta1. The identified cDNA includes sequences of the keratin 15 (K15) gene which encodes a component of the cytoskeleton of basal cells in stratified epithelia. Surprisingly, our cDNA also included an unknown sequence. Since this cDNA lacks an open reading frame, the corresponding mRNA is likely to be nonfunctional. However, we also demonstrate a strong negative regulation of the expression of the published, functional K15 variant. Expression of K15 was also suppressed by tumor necrosis factor alpha (TNF-alpha) and to a lesser extent by epidermal growth factor (EGF) and keratinocyte growth factor (KGF). By contrast, the major basal type I keratin, K14, was upregulated by TGF-beta1, whereas TNF-alpha, EGF, and KGF had no effect. Consistent with the in vitro data, we found a significant reduction of the K15 mRNA levels after skin injury, whereas K14 expression increased during the wound healing process. Immunostaining revealed the presence of K15 in all basal cells of the epidermis adjacent to the wound, but not in the hyperproliferative epithelium above the granulation tissue. These data demonstrate that K15 is excluded from the activated keratinocytes of the hyperthickened wound epidermis, possibly as a result of increased growth factor expression in injured skin.  相似文献   

5.
6.
7.
Human keratinocyte growth factor (KGF) is an epithelial cell specific mitogen which is secreted by normal stromal fibroblasts. In the present studies, we demonstrate that KGF is as potent as EGF in stimulating proliferation of primary or secondary human keratinocytes in tissue culture. Exposure of KGF- or EGF-stimulated keratinocytes to 1.0 mM calcium, an inducer of differentiation, led to cessation of cell growth. However, immunologic analysis of early and late markers of terminal differentiation, K1 and filaggrin, respectively, revealed striking differences in keratinocytes propagated in the presence of these growth factors. With KGF, the differentiation response was associated with expression of both markers whereas their appearance was retarded or blocked by EGF. TGF alpha, which also interacts with the EGF receptor, gave a similar response to that observed with EGF. These findings functionally distinguish KGF from the EGF family and support the role of KGF in the normal proliferation and differentiation of human epithelial cells.  相似文献   

8.
Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes.  相似文献   

9.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

10.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

11.
12.
Keratinocyte growth factor (KGF) induction of keratinocyte attachment and migration on provisional and basement membrane proteins was examined. KGF-treated keratinocytes showed increased attachment to collagen types I and IV and fibronectin, but, not to laminin-1, vitronectin, or tenascin. This increase was time- and dose-dependent. Increase in attachment occurred with 2 10 microg/ml of ECM proteins. This KGF-stimulated cell attachment was beta1 integrin-dependent but was not associated with stimulation of the cell surface expression nor affinity (activity) of the collagen integrin receptor (alpha2beta1) nor the fibronectin integrin receptors (alpha5beta1 or alphav). At the basal layer of KGF-treated cells significant accumulation of beta1 integrins was found at the leading edges, and actin stress fibers colocalized with beta1. KGF also induced migratory phenotype and stimulated keratinocyte migration on both fibronectin and collagen types I and IV but not on laminin-1, vitronectin nor tenascin. The results suggest that in addition to its proliferation promoting activity. KGF is able to modulate keratinocyte adhesion and migration on collagen and fibronectin. Our data suggest that KGF induced integrin avidity (clustering), a signaling event, which is not dependent on the alteration of cell surface integrin numbers.  相似文献   

13.
14.
15.
16.
Epithelial-mesenchymal interactions control epidermal growth and differentiation, but little is known about the mechanisms of this interaction. We have examined the effects of human dermal microvascular endothelial cells (DMEC) and fibroblasts on keratinocytes in conventional (feeder layer) and organotypic cocultures (lifted collagen gels) and demonstrated the induction of paracrine growth factor gene expression. Clonal keratinocyte growth was similarly stimulated in cocultures with irradiated DMEC and fibroblasts as feeder cells. This effect is most probably caused by induction of growth factor expression in cocultured dermal cells. Keratinocytes stimulated mRNA levels for KGF and IL-6 in both mesenchymal cell types and GM-CSF in fibroblasts. The feeder effect could not be replaced by conditioned media or addition of isolated growth factors. In organotypic cocultures with keratinocytes growing on collagen gels (repopulated with dermal cells), a virtually normal epidermis was formed within 7 to 10 d. Keratinocyte proliferation was drastically stimulated by dermal cells (histone 3 mRNA expression and BrdU labeling) which continued to proliferate as well in the gel. Expression of all typical differentiation markers was provoked in the reconstituted epithelium, though with different localization as compared to normal epidermis. Keratins K1 and K10 appeared coexpressed but delayed, reflecting conditions in epidermal hyperplasia. Keratin localization and proliferation were normalized under in vivo conditions, i.e., in surface transplants on nude mice. From these data it is concluded that epidermal homeostasis is in part controlled by complex reciprocally induced paracrine acting factors in concert with cell-cell interactions and extracellular matrix influences.  相似文献   

17.
Keratinocyte growth factor (KGF; also known as FGF‐7) is a well‐characterized paracrine growth factor for tissue growth and regeneration. However, its role in adipose tissue, which is known to undergo tremendous expansion in obesity, is virtually unknown. Given that we previously identified KGF as one of the up‐regulated growth factors in adipose tissue of an early‐life programmed rat model of visceral obesity, the present study was undertaken to examine the hypothesis that KGF promotes adipogenesis. Using 3T3‐L1 and rat primary preadipocytes as in vitro model systems, we demonstrated that (1) KGF stimulated preadipocyte proliferation in a concentration‐dependent manner with a maximal effect at 2.5 ng/ml (~2‐fold increase); (2) KGF mRNA was highly expressed in rat adipocytes and preadipocytes as well as 3T3‐L1 cells; (3) treatment of preadipocytes with a neutralizing antibody against KGF and siRNA‐mediated knockdown of KGF led to a 50% reduction in their proliferative capacity; (4) KGF activated the protein kinase Akt, and the PI3 kinase inhibitor LY294002 blocked KGF stimulation of preadipocyte proliferation; and (5) KGF did not promote differentiation of preadipocytes to mature adipocytes. Together, these results reveal adipocytes and their precursor cells as novel sites of KGF production. Importantly, they also demonstrate that KGF promotes preadipocyte proliferation by an autocrine mechanism that involves activation of the PI3K/Akt signaling pathway. Aberrant KGF expression may have consequences not only for normal adipose tissue growth but also for the pathogenesis of obesity. J. Cell. Biochem. 109: 737–746, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The keratinocyte growth factor (KGF/FGF7), produced by stromal cells, is a key paracrine mediator of epithelial proliferation, differentiation and migration. Expression of the growth factor is increased in wound healing and in hyperproliferative epithelial diseases, as a consequence of the activation of dermal fibroblasts by the inflammatory microenvironment. The middle ear cholesteatoma, an aural epidermal pathology characterized by keratinocyte hyperproliferation and chronic inflammation, may represent a model condition to study the epithelial-mesenchymal interactions. To develop an in vitro model for this disease, we isolated and characterized human primary cultures of fibroblasts associated with the cholesteatoma lesion, analyzing their secretory behaviour and degree of differentiation or activation. Compared to the perilesional or control normal fibroblasts, all cultures derived from cholesteatoma tissues were less proliferating and more differentiated and their highly variable activated phenotype correlated with the secretion of KGF as well as of metalloproteases 2 and 9. Culture supernatants collected from the cholesteatoma-associated fibroblasts were able to increase the proliferation and differentiation of human keratinocytes assessed by the expression of Ki67 and keratin-1 markers. The single crucial contribution of the KGF released by fibroblasts on the keratinocyte biological response was shown by the specific, although partial, block induced by inhibiting the KGF receptor or by immunoneutralizing the growth factor. Altogether, these results suggest that the activation of the stromal fibroblasts present in the pathological tissue, and the consequent increased secretion of KGF, play a crucial role in the deregulation of the epidermal proliferation and differentiation.  相似文献   

19.
Keratinocyte growth factor (KGF) activates keratinocyte migration and stimulates wound healing. Hyaluronan, an extracellular matrix glycosaminoglycan that accumulates in wounded epidermis, is known to promote cell migration, suggesting that increased synthesis of hyaluronan might be associated with the KGF response in keratinocytes. Treatment of monolayer cultures of rat epidermal keratinocytes led to an elongated and lifted cell shape, increased filopodial protrusions, enhanced cell migration, accumulation of intermediate size hyaluronan in the culture medium and within keratinocytes, and a rapid increase of hyaluronan synthase 2 (Has2) mRNA, suggesting a direct influence on this gene. In stratified, organotypic cultures of the same cell line, both Has2 and Has3 with the hyaluronan receptor CD44 were up-regulated and hyaluronan accumulated in the epidermis, the spinous cell layer in particular. At the same time the expression of the early differentiation marker keratin 10 was inhibited, whereas filaggrin expression and epidermal permeability were less affected. The data indicate that Has2 and Has3 belong to the targets of KGF in keratinocytes, and support the idea that enhanced hyaluronan synthesis acts an effector for the migratory response of keratinocytes in wound healing, whereas it may delay keratinocyte terminal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号