首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway.  相似文献   

2.
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.   总被引:24,自引:1,他引:23       下载免费PDF全文
S Mayor  S Sabharanjak    F R Maxfield 《The EMBO journal》1998,17(16):4626-4638
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins.  相似文献   

3.
《The Journal of cell biology》1989,109(6):3303-3314
To study the fusion and separation of endocytic compartments, we have used digital image analysis to quantify the accumulation of fluorescent ligands in endosomes during continuous endocytosis for periods of 1-20 min. Fluorescently labeled transferrin (Tf) and low density lipoproteins (LDL) were used as markers of recycling receptors and lysosomally directed ligands respectively. By measuring the intensity of individual endosomes, we found that the amount of LDL per endosome increases 30-40-fold between 1 and 10 min and then plateaus. In contrast, the amount of Tf per endosome reaches a steady state within 2 min at a level that is only three to four times that at 1 min. We used pulse-chase double label methods to demonstrate that Tf cycles through the compartment in which the LDL accumulates. When both Tf and LDL are added to cells simultaneously for 2 min, nearly all endosomes contain both labels. With 2-4 min further incubation in the absence of external ligands, LDL-containing compartments become depleted of Tf as Tf is directed to para-Golgi recycling endosomes. However, if Tf is added to the medium 2-4 min after a pulse with LDL, most of the LDL-containing endosomes become labeled with Tf. The data indicate that at least 30-40 endocytic vesicles containing both Tf and LDL fuse with an endosomal compartment over a period of 5-10 min. LDL accumulates within this compartment and Tf is simultaneously removed. Simple mathematical models suggest that this type of iterative fractionation can lead to very high efficiency sorting.  相似文献   

4.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.  相似文献   

5.
Previous studies of fibroblasts have demonstrated that recycling of endocytic receptors occurs through a default mechanism of membrane-volume sorting. Epithelial cells require an additional level of polar membrane sorting, but there are conflicting models of polar sorting, some suggesting that it occurs in early endosomes, others suggesting it occurs in a specialized apical recycling endosome (ARE). The relationship between endocytic sorting to the lysosomal, recycling and transcytotic pathways in polarized cells was addressed by characterizing the endocytic itineraries of LDL, transferrin (Tf) and IgA, respectively, in polarized Madin-Darby canine kidney (MDCK) cells. Quantitative analyses of 3-dimensional images of living and fixed polarized cells demonstrate that endocytic sorting occurs sequentially. Initially internalized into lateral sorting endosomes, Tf and IgA are jointly sorted from LDL into apical and medical recycling endosomes, in a manner consistent with default sorting of membrane from volume. While Tf is recycled to the basolateral membrane from recycling endosomes, IgA is sorted to the ARE prior to apical delivery. Quantifications of the efficiency of sorting of IgA from Tf between the recycling endosomes and the ARE match biochemical measurements of transepithelial protein transport, indicating that all polar sorting occurs in this step. Unlike fibroblasts, rab11 is not associated with Tf recycling compartments in either polarized or glass-grown MDCK cells, rather it is associated with the compartments to which IgA is directed after sorting from Tf. These results complicate a suggested homology between the ARE and the fibroblast perinuclear recycling compartment and provide a framework that justifies previous conflicting models of polarized sorting.  相似文献   

6.
Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37°C, ultrastructural studies on cryosections failed to detect B-fragment–specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor–containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN.  相似文献   

7.
Defining the organization of endocytic pathway in multinucleated skeletal myofibers is crucial to understand the routing of membrane proteins, such as receptors and glucose transporters, through this system. Here we analyzed the organization of the endocytic trafficking pathways in isolated rat myofibers. We found that sarcolemmal-coated pits and transferrin receptors were concentrated in the I band areas. Fluid phase markers were taken up into vesicles in the same areas along the whole length of the fibers and were then delivered into structures around and between the nuclei. These markers also accumulated beneath the neuromuscular and myotendinous junctions. The recycling compartment, labeled with transferrin, appeared as perinuclear and interfibrillar dots that partially colocalized with the GLUT4 compartment. Low-density lipoprotein, a marker of the lysosome-directed pathway, was transported into sparsely distributed perinuclear and interfibrillar dots that contacted microtubules. A majority of these dots did not colocalize with internalized transferrin, indicating that the recycling and the lysosome-directed pathways were distinct. In conclusion, the I band areas were active in endocytosis along the whole length of the multinucleated myofibers. The sorting endosomes distributed in a cross-striated fashion while the recycling and late endosomal compartments showed perinuclear and interfibrillar localizations and followed the course of microtubules.  相似文献   

8.
Rho GTPases are key regulators of actin dynamics. We report that the Rho GTPase TCL, which is closely related to Cdc42 and TC10, localizes to the plasma membrane and the early/sorting endosomes in HeLa cells, suggesting a role in the early endocytic pathway. Receptor-dependent internalization of transferrin (Tf) is unaffected by suppression of endogenous TCL by small interfering RNA treatment. However, Tf accumulates in Rab5-positive uncoated endocytic vesicles and fails to reach the early endosome antigen-1-positive early endosomal compartments and the pericentriolar recycling endosomes. Moreover, Tf release upon TCL knockdown is significantly slower. Conversely, in the presence of dominant active TCL, internalized Tf accumulates in early endosome antigen-1-positive early/sorting endosomes and not in perinuclear recycling endosomes. Tf recycles directly from the early/sorting endosomes and it is normally released by the cells. The same phenotype is generated by replacing the C terminus of dominant active Cdc42 and TC10 with that of TCL, indicating that all three proteins share downstream effector proteins. Thus, TCL is essential for clathrin-dependent endocytosed receptors to enter the early/sorting endosomes. Furthermore, the active GTPase favors direct recycling from early/sorting endosomes without accumulating in the perinuclear recycling endosomes.  相似文献   

9.
Previously we have shown that PDGF receptor mutants that do not bind PI- 3 kinase internalize after ligand binding, but fail to downregulate and degrade. To define further the role of PI-3 kinase in trafficking processes in mammalian cells, we have investigated the effects of a potent inhibitor of PI-3 kinase activity, wortmannin. At nanomolar concentrations, wortmannin inhibited both the transfer of PDGF receptors from peripheral compartments to juxtanuclear vesicles, and their subsequent degradation. In contrast, the delivery of soluble phase markers to lysosomes, assessed by the accumulation of Lucifer yellow (LY) in perinuclear vesicles after 120 min of incubation, was not blocked by wortmannin. Furthermore, wortmannin did not affect the rate of transferrin uptake, and caused only a small decrease in its rate of recycling. Thus, the effects of wortmannin on PDGFr trafficking are much more pronounced than its effects on other endocytic events. Unexpectedly, wortmannin also caused a striking effect on the morphology of endosomal compartments, marked by tubulation and enlargement of endosomes containing transferrin or LY. This effect was somewhat similar to that produced by brefeldin A, and was also blocked by pre-treatment of cells with aluminum fluoride (AlF4-). These results suggest two sites in the endocytic pathway where PI-3 kinase activity may be required: (a) to sort PDGF receptors from peripheral compartments to the lysosomal degradative pathway; and (b) to regulate the structure of endosomes containing lysosomally directed and recycling molecules. This latter function could be mediated through the activation of AlFt4-)-sensitive GTP-binding proteins downstream of PI-3 kinase.  相似文献   

10.
The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.  相似文献   

11.
After endocytosis, lysosomally targeted ligands pass through a series of endosomal compartments. The endocytic apparatus that accomplishes this passage may be considered to take one of two forms: (a) a system in which lysosomally targeted ligands pass through preexisting, long-lived early sorting endosomes and are then selectively transported to long-lived late endosomes in carrier vesicles, or (b) a system in which lysosomally targeted ligands are delivered to early sorting endosomes which themselves mature into late endosomes. We have previously shown that sorting endosomes in CHO cells fuse with newly formed endocytic vesicles (Dunn, K. W., T. E. McGraw, and F. R. Maxfield. 1989. J. Cell Biol. 109:3303-3314) and that previously endocytosed ligands lose their accessibility to fusion with a half-time of approximately 8 min (Salzman, N. H., and F. R. Maxfield. 1989. J. Cell Biol. 109:2097-2104). Here we have studied the properties of individual endosomes by digital image analysis to distinguish between the two mechanisms for entry of ligands into late endosomes. We incubated TRVb-1 cells (derived from CHO cells) with diO-LDL followed, after a variable chase, by diI-LDL, and measured the diO content of diI-containing endosomes. As the chase period was lengthened, an increasing percentage of the endosomes containing diO-LDL from the initial incubation had no detectable diI-LDL from the second incubation, but those endosomes that contained both probes showed no decrease in the amount of diO-LDL per endosomes. These results indicate that (a) a pulse of fluorescent LDL is retained by individual sorting endosomes, and (b) with time sorting endosomes lose the ability to fuse with primary endocytic vesicles. These data are inconsistent with a preexisting compartment model which predicts that the concentration of ligand in sorting endosomes will decline during a chase interval, but that the ability of the stable sorting endosome to receive newly endocytosed ligands will remain high. These data are consistent with a maturation mechanism in which the sorting endosome retains and accumulates lysosomally directed ligands until it loses its ability to fuse with newly formed endocytic vesicles and matures into a late endosome. We also find that, as expected according to the maturation model, new sorting endosomes are increasingly labeled during the chase period indicating that new sorting endosomes are continuously formed to replace those that have matured into late endosomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.  相似文献   

13.
Rab22a is a member of the Rab family of small GTPases that localizes in the endocytic pathway. In CHO cells, expression of canine Rab22a (cRab22a) causes a dramatic enlargement of early endocytic compartments. We wondered whether transferrin recycling is altered in these cells. Expression of the wild-type protein and a GTP hydrolysis-deficient mutant led to the redistribution of transferrin receptor to large cRab22a-positive structures in the periphery of the cell and to a significant decrease in the plasma membrane receptor. Kinetic analysis of transferrin uptake indicates that internalization and early recycling were not affected by cRab22a expression. However, recycling from large cRab22a-positive compartments was strongly inhibited. A similar effect on transferrin transport was observed when human but not canine Rab22a was expressed in HeLa cells. After internalization for short periods of time (5 to 8 min) or at a reduced temperature (16 degrees C), transferrin localized with endogenous Rab22a in small vesicles that did not tubulate with brefeldin A, suggesting that the endogenous protein is present in early/sorting endosomes. Rab22a depletion by small interfering RNA disorganized the perinuclear recycling center and strongly inhibited transferrin recycling. We speculate that Rab22a controls the transport of the transferrin receptor from sorting to recycling endosomes.  相似文献   

14.
The putative role of sorting early endosomes (EEs) in synaptic-like microvesicle (SLMV) formation in the neuroendocrine PC12 cell line was investigated by quantitative immunoelectron microscopy. By BSA-gold internalization kinetics, four distinct endosomal subcompartments were distinguished: primary endocytic vesicles, EEs, late endosomes, and lysosomes. As in other cells, EEs consisted of vacuolar and tubulovesicular subdomains. The SLMV marker proteins synaptophysin and vesicle-associated membrane protein 2 (VAMP-2) localized to both the EE vacuoles and associated tubulovesicles. Quantitative analysis showed that the transferrin receptor and SLMV proteins colocalized to a significantly higher degree in primary endocytic vesicles then in EE-associated tubulovesicles. By incubating PC12 cells expressing T antigen-tagged VAMP (VAMP-TAg) with antibodies against the luminal TAg, the recycling pathway of SLMV proteins was directly visualized. At 15 degrees C, internalized VAMP-TAg accumulated in the vacuolar domain of EEs. Upon rewarming to 37 degrees C, the labeling shifted to the tubular part of EEs and to newly formed SLMVs. Our data delineate a pathway in which SLMV proteins together with transferrin receptor are delivered to EEs, where they are sorted into SLMVs and recycling vesicles, respectively.  相似文献   

15.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

16.
The trafficking mechanisms that control the density of synaptic AMPA-type glutamate receptors have received significant attention because of their importance for regulating excitatory synaptic transmission and synaptic plasticity in the hippocampus. AMPA receptors are synthesized in the neuronal cell body and reach their postsynaptic targets after a complex journey involving multiple transport steps along different cytoskeleton structures and through various stages of the endocytic pathway. Dendritic spines are important sites for AMPA receptor trafficking and contain the basic components of endosomal recycling. On induction of synaptic plasticity, internalized AMPA receptors undergo endosomal sorting and cycle through early endosomes and recycling endosomes back to the plasma membrane (model for long-term potentiation) or target for degradation to the lysosomes (model for long-term depression). Exciting new studies now provide insight in actin-mediated processes that controls endosomal tubule formation and receptor sorting. This review describes the path of AMPA receptor internalization up to sites of recycling and summarizes recent studies on actin-mediated endosomal receptor sorting.  相似文献   

17.
After endocytosis, some membrane proteins recycle from early endosomes to the plasma membrane whereas others are transported to late endosomes and lysosomes for degradation. Conjugation with the small polypeptide ubiquitin is a signal for lysosomal sorting. Here we show that the hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, is involved in the endosomal sorting of ubiquitinated membrane proteins. Hrs contains a clathrin-binding domain, and by electron microscopy we show that Hrs localizes to flat clathrin lattices on early endosomes. We demonstrate that Hrs binds directly to ubiquitin by way of a ubiquitin-interacting motif (UIM), and that ubiquitinated proteins localize specifically to Hrs- and clathrin-containing microdomains. Whereas endocytosed transferrin receptors fail to colocalize with Hrs and rapidly recycle to the cell surface, transferrin receptors that are fused to ubiquitin interact with Hrs, localize to Hrs- and clathrin-containing microdomains and are sorted to the degradative pathway. Overexpression of Hrs strongly and specifically inhibits recycling of ubiquitinated transferrin receptors by a mechanism that requires a functional UIM. We conclude that Hrs sorts ubiquitinated membrane proteins into clathrin-coated microdomains of early endosomes, thereby preventing their recycling to the cell surface.  相似文献   

18.
The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal subdomains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway.  相似文献   

19.
Mammalian epithelial cell plasma membrane domains are separated by junctional complexes supported by actin. The extent to which actin acts elsewhere to maintain cell polarity remains poorly understood. Using latrunculin B (Lat B) to depolymerize actin filaments, several basolateral plasma membrane proteins were found to lose their polarized distribution. This loss of polarity did not reflect lateral diffusion through junctional complexes because a low-density lipoprotein receptor mutant lacking a functional endocytosis signal remained basolateral after Lat B treatment. Furthermore, Lat B treatment did not facilitate membrane diffusion across the tight junction as observed with ethylenediaminetetraacetic acid or dimethyl sulfoxide treatment. Detailed analysis of transferrin recycling confirmed Lat B depolarized recycling of transferrin from endosomes to the basolateral surface. Kinetic analysis suggested sorting was compromised at both basolateral early endosomes and perinuclear recycling endosomes. Despite loss of function, these two endosome populations remained distinct from each other and from early endosomes labeled by apically internalized ligand. Furthermore, apical and basolateral early endosomes were functionally distinct populations that directed traffic to a single common recycling endosomal compartment even after Lat B treatment. Thus, filamentous actin may help to guide receptor traffic from endosomes to the basolateral plasma membrane.  相似文献   

20.
A variety of physiologically important receptors are internalized and then recycled back to the plasma membrane by the endocytic recycling compartment. These include the transferrin receptor and many G-protein coupled receptors (GPCRs). The internalization of GPCRs is a result of agonist stimulation. A cell-based fluorescent imaging assay is described that detects and quantifies the presence of fluorescently labeled receptors and macromolecules in the recycling compartment. This High Content Screening application is conducted on the ArrayScan II System that includes fluorescent reagents, imaging instrumentation and the informatics tools necessary to screen for compounds that affect receptor internalization, recycling and GPCR activation. We demonstrate the Receptor Internalization and Trafficking application by quantifying (i) the internalization and recycling of the transferrin receptor using a fluorescently labeled ligand and (ii) the internalization of a physiologically functional model GPCR, a GFP-parathyroid hormone receptor chimera. These assays give high signal-to-noise ratios, broad dynamic ranges between stimulated and unstimulated conditions and low variability across different screening runs. Thus, the Receptor Internalization and Trafficking application, in conjunction with the ArrayScan II System, forms the basis of a robust, information-rich and automated screen for GPCR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号