首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free fatty acids (FFA) have been shown to inhibit insulin suppression of endogenous glucose production (EGP). To determine whether this is the result of stimulation by FFA of gluconeogenesis (GNG) or glycogenolysis (GL) or a combination of both, we have determined rates of GNG and GL (with (2)H(2)O) and EGP in 16 healthy nondiabetic volunteers (11 males, 5 females) during euglycemic-hyperinsulinemic (~450 pM) clamping performed either with or without simultaneous intravenous infusion of lipid plus heparin. During insulin infusion, FFA decreased from 571 to 30 micromol/l (P < 0.001), EGP from 15.7 to 2.0 micromol x kg(-1) x min(-1) (P < 0.01), GNG from 8.2 to 3.7 micromol x kg(-1). min(-1) (P < 0.05), and GL from 7.4 to -1.7 micromol x kg(-1). min(-1) (P < 0.02). During insulin plus lipid/heparin infusion, FFA increased from 499 to 1,247 micromol/l (P < 0.001). EGP decreased 64% less than during insulin alone (-5.1 +/- 0.7 vs. -13.7 +/- 3.4 micromol x kg(-1). min(-1)). The decrease in GNG was not significantly different from the decrease of GNG during insulin alone (-2.6 vs. -4.5 micromol x kg(-1). min(-1), not significant). In contrast, GL decreased 66% less than during insulin alone (-3.1 vs. -9.2 micromol x kg(-1). min(-1), P < 0.05). We conclude that insulin suppressed EGP by inhibiting GL more than GNG and that elevated plasma FFA levels attenuated the suppression of EGP by interfering with insulin suppression of GL.  相似文献   

2.
This study reports a novel protocol to increase plasma monounsaturated, polyunsaturated, and saturated nonesterified fatty acids (NEFA) in eight healthy volunteers (age 29-54 yr, body mass index 23-26 kg/m(2)). This was achieved by feeding small boluses of fat at different time points (35 g at 0 min and 8 g at 30, 60, 90, 120, 150, 180, and 210 min) in combination with a continuous low-dose heparin infusion. Olive oil, safflower oil, or palm stearin were used to increase monounsaturated, polyunsaturated, or saturated NEFAs, respectively. Plasma NEFA concentrations were increased for 2 h, when fat and heparin were given (olive oil: 745 +/- 35 micromol/l; safflower oil: 609 +/- 37 micromol/l, and palm stearin: 773 +/- 38 micromol/l) compared with the control test (no fat and no heparin: 445 +/- 41 micromol/l). During the heparin infusion, 18:1 n-9 was the most abundant fatty acid for the olive oil test compared with 18:2 n-6 for the safflower oil test and 16:0 for the palm stearin test (P < 0.01). The method described here successfully increases several types of plasma NEFA concentrations and could be used to investigate differential effects of elevated individual NEFAs on metabolic processes.  相似文献   

3.
Effects of dietary fats differing in fatty acid composition on insulin-stimulated glucose metabolism in adipocytes isolated from rat white adipose tissue were compared. Rats were fed experimental diets containing various fats differing in fatty acid composition for 7 days. In the first experiment, rats were fed palm oil mainly consisting of palmitic (45.3%) and oleic acids (39.1%) or safflower oil rich in linoleic acid (71.6%). In the second trial, rats were fed palm oil, or a fat mixture rich in linoleic acid or mold oil rich in gamma-linolenic acid. Contents of fatty acids except for linoleic and gamma-linolenic acid were comparable between the fat mixture and mold oil. The former was devoid of gamma-linolenic acid and contained 42.0% linoleic acid, while the latter contained 25.9% gamma-linolenic and 15.7% linoleic acids. In the first experiment, the insulin-dependent increase in glucose oxidation and incorporation into lipids was higher in rats fed safflower oil compared to those fed palm oil. In the second experiment, the insulin-dependent increase in glucose oxidation and incorporation into lipids was higher in rats fed the fat mixture and mold oil than in those fed palm oil. However, the extent of the increase in these parameters was much greater in rats fed mold oil than in those fed the fat mixture. Therefore, dietary gamma-linolenic acid compared to linoleic acid increases glucose metabolism in response to insulin stimuli in isolated rat adipocytes.  相似文献   

4.
To determine whether regulation of fasting endogenous glucose production (EGP) and glucose disappearance (R(d)) are both abnormal in people with type 2 diabetes, EGP and R(d) were measured in 7 "severe" (SD), 9 "mild" (MD), and 12 nondiabetic (ND) subjects (12.7 +/- 0.6 vs. 8.1 +/- 0.4 vs. 5.1 +/- 0.4 mmol/l) after an overnight fast and during a hyperglycemic pancreatic clamp. Fasting insulin was higher in both the SD and MD than ND subjects, whereas fasting glucagon only was increased (P < 0.05) in SD. Fasting EGP, glycogenolysis, gluconeogenesis, and R(d) all were increased (P < 0.05) in SD but did not differ in MD or ND. On the other hand, when glucose ( approximately 11 mmol/l), insulin ( approximately 72 pmol/l), and glucagon ( approximately 140 pg/ml) concentrations were raised to values similar to those observed in the severe diabetic subjects, EGP was higher (P < 0.001) and R(d) lower (P < 0.01) in both SD and MD than in ND. The higher EGP in the SD and MD than ND during the clamp was the result of increased (P < 0.05) rates of glycogenolysis (4.2 +/- 1.7 vs. 3.5 +/- 1.0 vs. 0.0 +/- 0.8 micromol.kg(-1).min(-1)), since gluconeogenesis did not differ among groups. We conclude that neither glucose production nor disappearance is appropriate for the prevailing glucose and insulin concentrations in people with mild or severe diabetes. Both increased rates of gluconeogenesis (likely because of higher glucagon concentrations) and lack of suppression of glycogenolysis contribute to excessive glucose production in type 2 diabetics.  相似文献   

5.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

6.
Effect of stimulation of glucokinase (GK) export from the nucleus by small amounts of sorbitol on hepatic glucose flux in response to elevated plasma glucose was examined in 6-h fasted Zucker diabetic fatty rats at 10 wk of age. Under basal conditions, plasma glucose, insulin, and glucagon were approximately 8 mM, 2,000 pmol/l, and 60 ng/l, respectively. Endogenous glucose production (EGP) was 44 +/- 4 micromol x kg(-1) x min(-1). When plasma glucose was raised to approximately 17 mM, GK was still predominantly localized with its inhibitory protein in the nucleus. EGP was not suppressed. When sorbitol was infused at 5.6 and 16.7 micromol x kg(-1) x min(-1), along with the increase in plasma glucose, GK was exported to the cytoplasm. EGP (23 +/- 19 and 12 +/- 5 micromol x kg(-1) x min(-1)) was suppressed without a decrease in glucose 6-phosphatase flux (145 +/- 23 and 126 +/- 16 vs. 122 +/- 10 micromol x kg(-1) x min(-1) without sorbitol) but increased in glucose phosphorylation as indicated by increases in glucose recycling (122 +/- 17 and 114 +/- 19 vs. 71 +/- 11 microl x kg(-1) x min(-1)), glucose-6-phosphate content (254 +/- 32 and 260 +/- 35 vs. 188 +/- 20 nmol/g liver), fractional contribution of plasma glucose to uridine 5'-diphosphate-glucose flux (43 +/- 8 and 42 +/- 8 vs. 27 +/- 6%), and glycogen synthesis from plasma glucose (20 +/- 4 and 22 +/- 5 vs. 9 +/- 4 mumol glucose/g liver). The decreased glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake may result from failure of the sugar to activate GK by stimulating the translocation of the enzyme.  相似文献   

7.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

8.
We assessed basal glucose metabolism in 16 female nonpregnant (NP) and 16 late-pregnant (P) conscious, 18-h-fasted dogs that had catheters inserted into the hepatic and portal veins and femoral artery approximately 17 days before the experiment. Pregnancy resulted in lower arterial plasma insulin (11 +/- 1 and 4 +/- 1 microU/ml in NP and P, respectively, P < 0.05), but plasma glucose (5.9 +/- 0.1 and 5.6 +/- 0.1 mg/dl in NP and P, respectively) and glucagon (39 +/- 3 and 36 +/- 2 pg/ml in NP and P, respectively) were not different. Net hepatic glucose output was greater in pregnancy (42.1 +/- 3.1 and 56.7 +/- 4.0 micromol. 100 g liver(-1).min(-1) in NP and P, respectively, P < 0.05). Total net hepatic gluconeogenic substrate uptake (lactate, alanine, glycerol, and amino acids), a close estimate of the gluconeogenic rate, was not different between the groups (20.6 +/- 2.8 and 21.2 +/- 1.8 micromol. 100 g liver(-1). min(-1) in NP and P, respectively), indicating that the increment in net hepatic glucose output resulted from an increase in the contribution of glycogenolytically derived glucose. However, total glycogenolysis was not altered in pregnancy. Ketogenesis was enhanced nearly threefold by pregnancy (6.9 +/- 1.2 and 18.2 +/- 3.4 micromol. 100 g liver(-1).min(-1) in NP and P, respectively), despite equivalent net hepatic nonesterified fatty acid uptake. Thus late pregnancy in the dog is not accompanied by changes in the absolute rates of gluconeogenesis or glycogenolysis. Rather, repartitioning of the glucose released from glycogen is responsible for the increase in hepatic glucose production.  相似文献   

9.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   

10.
The liver is considered the main contributor of endogenous glucose production (EGP) in the postabsorptive (PA) state in mammals. However, it has been shown that the kidney, in PA and fasting states, and the intestine, in insulinopenia states, could make significant contributions to EGP. Using glucose tracer dilution combined to a vessel ligaturing approach, we studied the respective role of these organs in glucose turnover under various nutritional conditions in the rat (Rattus norvegicus). Both organs constitute key sites of glucose disposal in all situations in the non-moving rat. The kidney makes a small (12%) contribution to EGP in the PA state (9.6+/-1.3 micromol/kg min, means+/-SEM, n=5), which is dramatically increased (p<0.01) in 24 h-fasting (18.8+/-1.0 micromol/kg min) or streptozotocin diabetes (48+/-3 micromol/kg min). The small intestine contributes to EGP via two ways: a direct glucose contribution that may only take place in fasting and diabetes; an indirect contribution via the supply of alanine and lactate to liver gluconeogenesis that may account for up to 5 micromol/kg min in both PA and fasted states in the rat. These data emphasize the coordinate interactions among the three gluconeogenic organs in glucose homeostasis when nutritional conditions are changing.  相似文献   

11.
The purpose of this investigation was to determine plasma glucose kinetics and substrate oxidation in men and women during exercise relative to the lactate threshold (LT). Subjects cycled for 25 min at 70 and 90% of O(2) uptake (VO(2)) at LT (70 and 90% LT, respectively). Plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose. There were no significant differences in glucose R(a) between men [22.6 +/- 1.9 and 39.9 +/- 3.9 micromol x kg fat-free mass (FFM)(-1) x min(-1) for 70 and 90% LT, respectively] and women (22.3 +/- 2.7 and 33.9 +/- 5.7 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively). Similarly, there were no significant differences in glucose R(d) between men (21.2 +/- 1.9 and 38.1 +/- 3.7 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively) and women (21.3 +/- 2.8 and 33.3 +/- 5.6 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively). Although there were no differences between genders in the relative contribution of carbohydrate (CHO) to total energy expenditure, the relative contribution of muscle glycogen to total CHO oxidation (75.8 +/- 3.2 and 64.2 +/- 8.0% for men and women, respectively, at 70% LT and 75.1 +/- 2.6 and 60.1 +/- 11.2% for men and women, respectively, at 90% LT) was lower in women. Consequently, the relative contribution of blood glucose to total CHO oxidation was significantly higher in women. These results indicate that although plasma glucose R(a) and R(d) are similar in men and women, the relative contribution of muscle glycogen and blood glucose is significantly different in women during moderate-intensity exercise relative to LT.  相似文献   

12.
In preterm infants, both hypo- and hyperglycemia are a frequent problem. Intravenous lipids can affect glucose metabolism by stimulation of gluconeogenesis by providing glycerol, which is a gluconeogenic precursor, and/or free fatty acids (FFA), which are stimulants of the rate of gluconeogenesis. In 25 preterm infants, glucose production and gluconeogenesis were measured using stable isotope techniques during a 6-h infusion of glucose only, glucose plus glycerol, or glucose plus an intravenous lipid emulsion. Two lipid emulsions differing in FFA composition were used: Intralipid ( approximately 60% polyunsaturated FFA) and Clinoleic (approximately 60% monounsaturated FFA). The rate of glucose infusion was 22 micromol x kg(-1) x min(-1) in all groups. During the study infusion, the FFA concentrations were higher in both lipid groups vs. the glycerol group (P < 0.001). Compared with baseline, the glucose production rate increased in the Intralipid group, whereas it decreased in the other groups (P = 0.002) due to a significant increase in gluconeogenesis in the Intralipid group (P = 0.016). The plasma glucose concentration was significantly higher during Intralipid infusion vs. the other groups (P = 0.046). Our conclusion was that Intralipid enhanced glucose production by increasing gluconeogenesis in preterm infants. This can be ascribed to the stimulatory effect of FFA in addition to any effect of glycerol alone. The lack of stimulation of gluconeogenesis in the Clinoleic vs. the Intralipid group suggests that different classes of fatty acids exert different effects on glucose kinetics in preterm infants.  相似文献   

13.
Hypertriglyceridemia is common in individuals with human immunodeficiency (HIV) infection, but the mechanisms responsible for increased plasma triglyceride (TG) concentrations are not clear. We evaluated fatty acid and VLDL-TG kinetics during basal conditions and during a glucose infusion that resulted in typical postprandial plasma glucose and insulin concentrations in six men with HIV-dyslipidemia [body mass index (BMI): 28 +/- 2 kg/m2] and six healthy men (BMI: 26 +/- 2 kg/m2). VLDL-TG secretion and palmitate rate of appearance (Ra) in plasma were measured by using stable-isotope-labeled tracer techniques. Basal palmitate Ra and VLDL-TG secretion rates were greater (P < 0.01 for both) in men with HIV-dyslipidemia (1.04 +/- 0.07 micromol palmitate x kg-1 x min-1 and 5.7 +/- 0.6 micromol VLDL-TG x l plasma-1 x min-1) than in healthy men (0.67 +/- 0.08 micromol palmitate. kg-1 x min-1 and 3.0 +/- 0.5 micromol VLDL-TG x l plasma-1 x min-1). Basal VLDL-TG plasma clearance was lower in men with HIV-dyslipidemia (13 +/- 1 ml/min) than in healthy men (19 +/- 2 ml/min; P < 0.05). Glucose infusion decreased palmitate Ra (by approximately 50%) and the VLDL-TG secretion rate (by approximately 30%) in both groups, but the VLDL-TG secretion rate remained higher (P < 0.05) in subjects with HIV-dyslipidemia. These findings demonstrate that increased secretion of VLDL-TG and decreased plasma VLDL-TG clearance, during both fasting and fed conditions, contribute to hypertriglyceridemia in men with HIV-dyslipidemia. Although it is likely that increased free fatty acid release from adipose tissue contributes to the increase in basal VLDL-TG concentration, other factors must be involved, because insulin-induced suppression of lipolysis and systemic fatty acid availability did not normalize the VLDL-TG secretion rate.  相似文献   

14.
Perinatal onset of hepatic gluconeogenesis in the lamb   总被引:2,自引:0,他引:2  
Hepatic gluconeogenesis does not occur in the unstressed fetal sheep. After birth, in addition to glycogenolysis, the newborn lamb must eventually initiate gluconeogenesis to maintain glucose homeostasis. The regulation and time course of this transition have not been defined. We studied six animals in an acute preparation before and after delivery to determine hepatic lactate and glucose uptake, hepatic gluconeogenesis from lactate, and plasma catecholamine and cortisol concentrations. After a priming dose, continuous infusion of [14C]lactate provided tracer substrate for calculations of gluconeogenesis in the fetus and then for ten hours after delivery in the newborn lamb. The radionuclide-labelled microsphere method was used to measure hepatic blood flow. Appreciable gluconeogenesis was not present during the fetal period. Following delivery, the newborn lambs began to produce significant quantities of glucose from lactate at 6 h of age (1.37 +/- 0.84 mg.min-1.100 g-1 min-1 x 100 g-1 liver), when gluconeogenesis from lactate accounted for 22% of hepatic glucose output. Despite the onset of gluconeogenesis, postnatal lambs had blood glucose concentrations that remained less than fetal levels of 23.4 +/- 12.1 mg/dl for the duration of the 10-h study. Plasma norepinephrine concentration was 1380 +/- 1145 pg/ml in the fetus and fell by 2 h after birth. Plasma epinephrine concentrations were highest at 15 min after birth (205 +/- 262 pg/ml), but remained quite low for the remainder of the study. Plasma cortisol concentrations did not vary over the course of study, ranging from 40 to 50 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To determine the effects of an increase in lipolysis on the glycogenolytic effect of epinephrine (EPI), the catecholamine was infused portally into 18-h-fasted conscious dogs maintained on a pancreatic clamp in the presence [portal (Po)-EPI+FFA, n = 6] and absence (Po-EPI+SAL, n = 6) of peripheral Intralipid infusion. Control groups with high glucose (70% increase) and free fatty acid (FFA; 200% increase; HG+FFA, n = 6) and high glucose alone (HG+SAL, n = 6) were also included. Hepatic sinusoidal EPI levels were elevated (Delta 568 +/- 77 and Delta 527 +/- 37 pg/ml, respectively) in Po-EPI+SAL and EPI+FFA but remained basal in HG+FFA and HG+SAL. Arterial plasma FFA increased from 613 +/- 73 to 1,633 +/- 101 and 746 +/- 112 to 1,898 +/- 237 micromol/l in Po-EPI+FFA and HG+FFA but did not change in EPI+SAL or HG+SAL. Net hepatic glycogenolysis increased from 1.5 +/- 0.3 to 3.1 +/- 0.4 mg x kg(-1) x min(-1) (P < 0.05) by 30 min in response to portal EPI but did not rise (1.8 +/- 0.2 to 2.1 +/- 0.3 mg x kg(-1) x min(-1)) in response to Po-EPI+FFA. Net hepatic glycogenolysis decreased from 1.7 +/- 0.2 to 0.9 +/- 0.2 and 1.6 +/- 0.2 to 0.7 +/- 0.2 mg x kg(-1) x min(-1) by 30 min in HG+FFA and HG+SAL. Hepatic gluconeogenic flux to glucose 6-phosphate increased from 0.6 +/- 0.1 to 1.2 +/- 0.1 mg x kg(-1) x min(-1) (P < 0.05; by 3 h) and 0.7 +/- 0.1 to 1.6 +/- 0.1 mg x kg(-1) x min(-1) (P < 0.05; at 90 min) in HG+FFA and Po-EPI+FFA. The gluconeogenic parameters remained unchanged in the Po-EPI+SAL and HG+SAL groups. In conclusion, increased FFA markedly changed the mechanism by which EPI stimulated hepatic glucose production, suggesting that its overall lipolytic effect may be important in determining its effect on the liver.  相似文献   

16.
It has been suggested that insulin-induced suppression of endogenous glucose production (EGP) may be counteracted independently of increased epinephrine (Epi) or glucagon during moderate hypoglycemia. We examined EGP in nondiabetic (n = 12) and type 1 diabetic (DM1, n = 8) subjects while lowering plasma glucose (PG) from clamped euglycemia (5.6 mmol/l) to values just above the threshold for Epi and glucagon secretion (3.9 mmol/l). Individualized doses of insulin were infused to maintain euglycemia during pancreatic clamps by use of somatostatin (250 microg/h), glucagon (1.0 ng. kg(-1). min(-1)), and growth hormone (GH) (3.0 ng. kg(-1). min(-1)) infusions without need for exogenous glucose. Then, to achieve physiological hyperinsulinemia (HIns), insulin infusions were fixed at 20% above the rate previously determined for each subject. In nondiabetic subjects, PG was reduced from 5.4 +/- 0.1 mmol/l to 3.9 +/- 0.1 mmol/l in the experimental protocol, whereas it was held constant (5. 3 +/- 0.2 mmol/l and 5.5 mmol/l) in control studies. In the latter, EGP (estimated by [3-(3)H]glucose) fell to values 40% of basal (P < 0.01). In contrast, in the experimental protocol, at comparable HIns but with PG at 3.9 +/- 0.1 mmol/l, EGP was activated to values about twofold higher than in the euglycemic control (P < 0.01). In DM1 subjects, EGP failed to increase in the face of HIns and PG = 3.9 +/- 0.1 mmol/l. The decrease from basal EGP in DM1 subjects (4.4 +/- 1.0 micromol. kg(-1). min(-1)) was nearly twofold that in nondiabetics (2.5 +/- 0.8 micromol. kg(-1). min(-1), P < 0.02). When PG was lowered further to frank hypoglycemia ( approximately 3.1 mmol/l), the failure of EGP activation in DM1 subjects was even more profound but associated with a 50% lower plasma Epi response (P < 0. 02) compared with nondiabetics. We conclude that glucagon- or epinephrine-independent activation of EGP may accompany other counterregulatory mechanisms during mild hypoglycemia in humans and is impaired or absent in DM1.  相似文献   

17.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

18.
To determine whether, in the presence of constant insulin concentrations, a change in glucose concentrations results in a reciprocal change in endogenous glucose production (EGP), glucagon ( approximately 130 ng/l) and insulin ( approximately 65 pmol/l) were maintained at constant "basal" concentrations while glucose was clamped at approximately 5.3 mM (euglycemia), approximately 7.0 mM (sustained hyperglycemia; n = 10), or varied to create a "postprandial" profile (profile; n = 11). EGP fell slowly over the 6 h of the euglycemia study. In contrast, an increase in glucose to 7.13 +/- 0.3 mmol/l resulted in prompt and sustained suppression of EGP to 9.65 +/- 1.21 micromol x kg-1 x min-1. On the profile study day, glucose increased to a peak of 11.2 +/- 0.5 mmol/l, and EGP decreased to a nadir of 6.79 +/- 2.54 micromol x kg-1 x min-1 by 60 min. Thereafter, the fall in glucose was accompanied by a reciprocal rise in EGP to rates that did not differ from those observed on the euglycemic study day (11.31 +/- 2.45 vs. 12.11 +/- 3.21 micromol x kg-1 x min-1). Although the pattern of change of glucose differed markedly on the sustained hyperglycemia and profile study days, by design the area above basal did not. This resulted in equivalent suppression of EGP below basal (-1,952 +/- 204 vs. -1,922 +/- 246 mmol. kg-1. 6 h-1). These data demonstrate that, in the presence of a constant basal insulin concentration, changes in glucose within the physiological range rapidly and reciprocally regulate EGP.  相似文献   

19.
We determined whether insulin therapy changes liver fat content (LFAT) or hepatic insulin sensitivity in type 2 diabetes. Fourteen patients with type 2 diabetes (age 51+/-2 yr, body mass index 33.1+/-1.4 kg/m2) treated with metformin alone received additional basal insulin for 7 mo. Liver fat (proton magnetic resonance spectroscopy), fat distribution (MRI), fat-free and fat mass, and whole body and hepatic insulin sensitivity (6-h euglycemic hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose) were measured. The insulin dose averaged 75+/-10 IU/day (0.69+/-0.08 IU/kg, range 24-132 IU/day). Glycosylated hemoglobin A1c (Hb A1c) decreased from 8.9+/-0.3 to 7.4+/-0.2% (P<0.001). Whole body insulin sensitivity increased from 2.21+/-0.38 to 3.08+/-0.40 mg/kg fat-free mass (FFM).min (P<0.05). This improvement could be attributed to enhanced suppression of hepatic glucose production (HGP) by insulin (HGP 1.04+/-0.28 vs. 0.21+/-0.19 mg/kg FFM.min, P<0.01). The percent suppression of HGP by insulin increased from 72+/-8 to 105+/-11% (P<0.01). LFAT decreased from 17+/-3 to 14+/-3% (P<0.05). The change in LFAT was significantly correlated with that in hepatic insulin sensitivity (r=0.56, P<0.05). Body weight increased by 3.0+/-1.1 kg (P<0.05). Of this, 83% was due to an increase in fat-free mass (P<0.01). Fat distribution and serum adiponectin concentrations remained unchanged while serum free fatty acids decreased significantly. Conclusions: insulin therapy improves hepatic insulin sensitivity and slightly but significantly reduces liver fat content, independent of serum adiponectin.  相似文献   

20.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号