首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物抗虫基因工程研究进展   总被引:21,自引:0,他引:21  
植物抗虫基因工程为防治农业害虫提供了一条崭新途径。本文对植物抗虫基因工程近年来所取得的某些研究进展,包括目前已发现和利用的抗虫基因、提高抗虫基因在植物体内表达的方法以及防止或延缓害虫产生抗性的策略等方面进行了综合评述,并对植物抗虫基因工程中有待解决的问题和发展前提提出了自己的看法。  相似文献   

2.
侯丙凯  陈正华 《植物学报》2000,17(5):385-393
植物抗虫基因工程为防治农业害虫提供了一条崭新途径。本文对植物抗虫基因工程近年来所取得的某些研究进展,包括目前已发现和利用的抗虫基因、提高抗虫基因在植物体内表达的方法以及防止或延缓害虫产生抗性的策略等方面进行了综合评述,并对植物抗虫基因工程中有待解决的问题和发展前景提出了自己的看法。  相似文献   

3.
The evolutionary ecology of insect resistance to plant chemicals   总被引:3,自引:0,他引:3  
Understanding the diversity of insect responses to chemical pressures (e.g. plant allelochemicals and pesticides) in their local ecological context represents a key challenge in developing durable pest control strategies. To what extent do the resistance mechanisms evolved by insects to deal with the chemical defences of plants differ from those that have evolved to resist insecticides? Here, we review recent advances in our understanding of insect resistance to plant chemicals, with a special emphasis on their underlying molecular basis, evaluate costs associated with each resistance trait, and discuss the ecological and evolutionary significance of these findings.  相似文献   

4.
5.
Bt crop pyramids produce two or more Bt proteins active to broaden the spectrum of action and to delay the development of resistance in exposed insect populations. The cross‐resistance between Bt toxins is a vital restriction factor for Bt crop pyramids, which may reduce the effect of pyramid strategy. In this review, the status of the cross‐resistance among more than 20 Bt toxins that are most commonly used against 13 insect pests was analyzed. The potential mechanisms of cross‐resistance are discussed. The corresponding measures, including pyramid RNA interference and Bt toxin, “high dose/refuge,” and so on are advised to be taken for adopting the pyramided strategy to delay the Bt evolution of resistance and control the target pest insect.  相似文献   

6.
The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (Df) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the Df motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.  相似文献   

7.
8.
The use, as opposed to the procurement, of transgenic crop plants is discussed in this paper. Transgenic crop plants must not be used until appropriate strategies for their use have been designed and not before crop plants with a variety of insect defenses have been developed. The use of a crop plant with a single defense will pose as strong a selection pressure as the use of a single synthetic insecticide, since insect herbivores are able to evolve effective counter-defenses. The defenses of insects in natural plant-insect associations and with regard to synthetic insecticides are described to demonstrate that there is nothing unique about insecticide resistance. It is the inevitable alternative to local extinction in response to a persistent and predictable selection pressure. Plants counteract insect defensive evolution by keeping the selection pressure as variable as possible. This leads to the conclusion that the best use of biotechnology in crop protection is to reintroduce chemical diversity into crop plants.  相似文献   

9.
作物抗虫基因工程及其安全性   总被引:22,自引:3,他引:19  
冯英  薛庆中 《遗传》2001,23(6):571-576
利用基因工程培育抗虫新品种是农作物害虫防治的有效途径。本综述了来自细菌的Bt基因及来源于植物的蛋白酶抑制剂基因、凝聚素基因、α-淀粉酶抑制剂基因等转基因植物的防治效果,探讨了它们的安全性,并指出了理想杀虫剂应具备的基本特征。  相似文献   

10.
Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.  相似文献   

11.
12.
Protease inhibitors have been proposed as potential defense molecules for increased insect resistance in crop plants. Compensatory over-production of insensitive proteases in the insect, however, has limited suitability of these proteins in plant protection, with very high levels of inhibitor required for increased plant resistance. In this study we have examined whether combined used of two inhibitors is effective to prevent this compensatory response. We show that leaf-specific over-expression of the potato PI-II and carboxypeptidase inhibitors (PCI) results in increased resistance to Heliothis obsoleta and Liriomyza trifolii larvae in homozygote tomato lines expressing high levels (#62;1 the total soluble proteins) of the transgenes. Leaf damage in hemizygous lines for these transformants was, however, more severe than in the controls, thus evidencing a compensation response of the larvae to the lower PI concentrations in these plants. Development of comparable adaptive responses in both insects suggests that insect adaptation does not entail specific recognition of the transgene, but rather represents a general adaptive mechanism triggered in response to the nutritional stress imposed by sub-lethal concentrations of the inhibitors. Combined expression of defense genes with different mechanisms of action rather than combinations of inhibitors may then offer a better strategy in pest management as it should be more effective in overcoming this general adaptive response in the insect.  相似文献   

13.
14.
Plant derived protease inhibitors(PIs)are a promising defensin for crop im-provement and insect pest management.Although agronomist made significant efforts in utilizing PIs for managing insect pests.the potentials of PIs are still obscured.Insect ability to compensate nutrient starvation induced by dietary PI feeding using different strategies,that is,overexpression of PI-sensitive protease,expression of PI-insensitive proteases,degradation of PI,has made this innumerable collection of PIs worthless.A practical challenge for agronomist is to identify potent PI candidates,to limit insect compensatory responses and to elucidate insect compensatory and resistance mechanisms activated upon herbivory.This knowledge could be further efficiently utilized to identify potential targets for RNAi-mediated pest control.These vital genes of insects could be functionally anno-tated using the advanced gene-editing technique,CRISPR/Cas9.Contemporary research is exploiting different in silico and modern molecular biology techniques to utilize PIs in controlling insect pests efficiently.This review is structured to update recent advancements in this field,along with is chronological background.  相似文献   

15.
16.
With ongoing global climate change,water scarcity-induced drought stress remains a major threat to agricultural productivity.Plants undergo a series of physiological and morphological changes to cope with drought stress,including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake.Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species.The functional dissection of t...  相似文献   

17.
1 The western corn rootworm (WCR) is a historic pest with a legacy of resistance and behavioural plasticity. Its behaviour and nutritional ecology are important to rootworm management. The success of the most effective and environmentally benign rootworm management method, annual crop rotation, was based on an understanding of rootworm behaviour and host–plant relationships. Enthusiastic adoption of crop rotation, provided excellent rootworm management, but also selected for behavioural resistance to this cultural control.
2 Though well-studied, significant gaps in WCR biology remain. Understanding the topics reviewed here (mating behaviour, nutritional ecology, larval and adult movement, oviposition, alternate host use, and chemical ecology) is a starting point for adapting integrated pest management and insect resistance management (IRM) to an expanding WCR threat. A presentation of significant questions and areas in need of further study follow each topic.
3 The expansion of WCR populations into Europe exposes this pest to new environmental and regulatory conditions that may influence its behaviour and ecology. Reviewing the state of current knowledge provides a starting point of reference for researchers and pest management decision-makers in North America and Europe.
4 The trend toward increasing adoption of transgenic maize will place an increasing premium on understanding WCR behaviour. IRM plans designed to promote sustainable deployment of transgenic hybrids are grounded on assumptions about WCR movement, mating and ovipositional behaviour. Preserving the utility of new and old management options will continue to depend on a thorough understanding of WCR biology, even as the ecological circumstances and geography of WCR problems become more complex.  相似文献   

18.
亚麻荠种植和利用的研究现状   总被引:13,自引:0,他引:13  
介绍了亚麻荠(Camelina sativa(L.)Crantz)的种植历史、栽培特性、种子成分、生物学特性、栽培措施、抗病虫害能力以及对其产物的应用.亚麻荠耐旱和抗病虫草能力强的特性符合农业可持续发展的方向.作为一种低投入的经济作物,亚麻荠的种植在我国有着广阔的发展前景.  相似文献   

19.
Inducible direct plant defense against insect herbivores: A review   总被引:7,自引:0,他引:7  
Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. Overall categories of direct plant defenses against insect herbivores include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. Multiple factors with additive or even synergistic impact are usually involved in defense against a specific insect species, and factors of major importance to one insect species may only be of secondary importance or not effective at all against another insect species. Extensive qualitative and quantitative high throughput analyses of temporal and spatial variations in gene expression, protein level and activity, and metabolite concentration will accelerate not only the understanding of the overall mechanisms of direct defense, but also accelerate the identification of specific targets for enhancement of plant resistance for agriculture.  相似文献   

20.
植物诱导性直接防御   总被引:7,自引:2,他引:7  
众所周知,植物对植食性昆虫危害的反应表现在3个方面:直接防御,间接防御,和耐害性。直接防御是指植物自身所具有的能影响寄主植物感虫性的所有特性。植物对昆虫危害的直接防御包括:限制食物供给,降低营养价值,减少偏嗜程度,破坏组织结构和抑制害虫代谢途径。目前已知的防御化合物主要包括植物次生代谢物质、昆虫消化酶(蛋白)抑制剂、蛋白酶、凝集素、氨基酸脱氨酶和氧化酶。植物在防御某种昆虫为害时多个因素往往具有累加效应或协同作用,并且对一种昆虫起主导作用的因素在防御另一种昆虫时可能仅仅起次要作用甚至根本不起作用。因此,对寄主植物基因表达、蛋白水平和活性以及代谢物含量在不同时空条件下进行广泛的定量和定性的高通量分析,不仅可以促进对植物直接防御机制的全面理解,而且有助于在农业生产中加快对作物抗性的特定靶标的鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号