首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a boy with duplication of the short arm of chromosome 7 (karyotype 46,XY, dup (7) (p11.2----pter), QFQ, GTG, RBA). The boy showed delayed closure of fontanels, reduced eyebrows, short nose with low and broad nasal bridge, small upper and prominent full lower lips, severe delay of speech development. Comparison with the phenotype of 15 reported cases from the literature in relation to the extent of the duplicated segment did not show a clear phenotype/karyotype correlation.  相似文献   

2.
Disorders known to be caused by molecular and cytogenetic abnormalities of the proximal short arm of chromosome 17 include Charcot-Marie-Tooth disease type 1A (CMT1A), hereditary neuropathy with liability to pressure palsies (HNPP), Smith-Magenis syndrome (SMS), and mental retardation and congenital anomalies associated with partial duplication of 17p. We identified a patient with multifocal mononeuropathies and mild distal neuropathy, growth hormone deficiency, and mild mental retardation who was found to have a duplication of the SMS region of 17p11.2 and a deletion of the peripheral myelin protein 22 (PMP22) gene within 17p12 on the homologous chromosome. Further molecular analyses reveal that the dup(17)(p11.2p11.2) is a de novo event but that the PMP22 deletion is familial. The family members with deletions of PMP22 have abnormalities indicative of carpal tunnel syndrome, documented by electrophysiological studies prior to molecular analysis. The chromosomal duplication was shown by interphase FISH analysis to be a tandem duplication. These data indicate that familial entrapment neuropathies, such as carpal tunnel syndrome and focal ulnar neuropathy syndrome, can occur because of deletions of the PMP22 gene. The co-occurrence of the 17p11.2 duplication and the PMP22 deletion in this patient likely reflects the relatively high frequency at which these abnormalities arise and the underlying molecular characteristics of the genome in this region.  相似文献   

3.
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.  相似文献   

4.
Renewed examinatinon with improved banding techniques of a boy previously reported to have the karyotype 46, XY,del(12)(p11) revealed a translocation 46, XY,t(10;12)(p13;p11), and reexamination of a boy previously reported to have the karyotype 46,XY/46,XY,del(5)(p13) showed the same mosaicism, but with a significantly lower frequency of cells with del(5)(p13), 8% compared with 23% at the time of birth. The decrease of the frequency of cells with chromosome abnormality in mixoploids during the first years of life as found in the present case as well as in prevously reported cases is discussed.  相似文献   

5.
Contiguous gene syndromes (CGS) are a group of disorders associated with chromosomal rearrangements of which the phenotype is thought to result from altered copy numbers of physically linked dosage-sensitive genes. Smith-Magenis syndrome (SMS) is a CGS associated with a deletion within band p11.2 of chromosome 17. Recently, patients harboring the predicted reciprocal duplication product [dup(17)(p11.2p11.2)] have been described as having a relatively mild phenotype. By chromosomal engineering, we created rearranged chromosomes carrying the deletion [Df(11)17] or duplication [Dp(11)17] of the syntenic region on mouse chromosome 11 that spans the genomic interval commonly deleted in SMS patients. Df(11)17/+ mice exhibit craniofacial abnormalities, seizures, marked obesity, and male-specific reduced fertility. Dp(11)17/+ animals are underweight and do not have seizures, craniofacial abnormalities, or reduced fertility. Examination of Df(11)17/Dp(11)17 animals suggests that most of the observed phenotypes result from gene dosage effects. Our murine models represent a powerful tool to analyze the consequences of gene dosage imbalance in this genomic interval and to investigate the molecular genetic bases of both SMS and dup(17)(p11.2p11.2).  相似文献   

6.
Autosomal dominant Charcot-Marie-Tooth type-1A neuropathy (CMT1A) is a demyelinating peripheral nerve disorder that is commonly associated with a submicroscopic tandem DNA duplication of a 1.5-Mb region of 17p11.2p12 that contains the peripheral myelin gene PMP22. Clinical features of CMT1A include progressive distal muscle atrophy and weakness, foot and hand deformities, gait abnormalities, absent reflexes, and the completely penetrant electrophysiologic phenotype of symmetric reductions in motor nerve conduction velocities (NCVs). Molecular and fluorescence in situ hybridization (FISH) analyses were performed to determine the duplication status of the PMP22 gene in four patients with rare cytogenetic duplications of 17p. Neuropathologic features of CMT1A were seen in two of these four patients, in addition to the complex phenotype associated with 17p partial trisomy. Our findings show that the CMT1A phenotype of reduced NCV is specifically associated with PMP22 gene duplication, thus providing further support for the PMP22 gene dosage mechanism for CMT1A. Received: 3 May 1995 / Revised: 1 August 1995  相似文献   

7.
We report a 15 month old boy with prominent metopic suture, epicanthal folds, strabismus, low-set ears, microretrognathia, large anterior fontanel, bilateral simian creases, muscular hypotonia, and severe psychomotor retardation. He also had West syndrome. An electroencephalogram showed hypsarrythmia, and cranial MR indicated a myelinisation delay. Standard karyotyping showed additional material on one chromosome 9p. Using FISH, a terminal 7q duplication spanning 26 Mb in size and a terminal 9p deletion sized (at least) 9.1 Mb were identified. The father had a karyotype of t(7;9)(q33;p23) and the mother's karyotype was normal. The boy presented typical facial features of the distal 7q duplication syndrome but no genital anomalies attributable to his distal 9p deletion. We assume that the severe epilepsy is likely due to the trisomy 7q.  相似文献   

8.
Two intercomplementary methods of 17p11.2 duplication/deletion identification have been elaborated: STR allelic variants analysis and direct PMP22 gene dosage measuring by means of quantitative Real-Time PCR. It has been carried out detection and analysis of 17p11.2 chromosome region rearrangements in CMT1 patients from Ukraine. It has been registered the high level of de novo cases with 17p11.2-duplication. It has been shown the 17p11.2 chromosome region duplication/deletion association with CMT1A and HNPP clinical phenotypes which may be used in differential diagnosis of this type of CMT polyneuropathy. The article is published in the original.  相似文献   

9.
In this case report we present a child with an additional chromosome in the karyotype. The karyotypes of the boy and his parents were analyzed by use of a conventional banding technique (GTG) and fluorescence in situ hybridization (FISH). Probes painting whole chromosomes 12 and 18 were used in FISH. Cytogenetic examination of the parents revealed that his mother was carrying balanced reciprocal translocation between chromosomes 12 and 18. Her karyotype was described as 46,XX,t(12;18)(p13;q12). Father's karyotype was normal, described as 46,XY. The boy's karyotype was defined as 47,XY,+der(18)t(12;18)(p13;q12). The additional chromosome appeared probably due to 3:1 meiotic disjunction of the maternal balanced translocation, known as tertiary trisomy. The mother displayed a normal phenotype and delivered earlier a healthy child. However, the boy with the unbalanced karyotype shows multiple congenital abnormalities.  相似文献   

10.
Duplications and deletions of the same gene loci or chromosome regions are known to produce different clinical manifestations and are significant factors in human morbidity and mortality. Extensive cytogenetic and molecular cytogenetic studies with cosmid and YAC probes in two patients with unique mosaicism for reciprocal duplication-deletion allowed us to further understand the origin of these abnormalities. The first patient's mosaic karyotype was 46,XX, inv dup(11) (q23q13)/46,XX,del(11)(q13q23). The second patient had a 46,XY,dup(7)(p11.2p13)/46,XY,del(7)(p11.2p13)/46,XY karyotype. Fluorescence in situ hybridization studies on the first patient placed the two breakpoints near the folate-sensitive fragile sites FRA11A and FRA11B. The presence of repeated sequences responsible for these fragile sites may have been involved in the patient's duplication-deletion. Our investigation leads us to conclude that, in addition to known mechanisms (such as unequal crossovers between homologs, unequal sister chromatid exchanges, excision of intrachromatid loops, and meiotic recombination within a single chromatid), duplication-deletion can also arise by the formation of an overlying loop followed by an uneven crossover at the level of the DNA strand.  相似文献   

11.
Partial 1p monosomy in a physically and mentally retarded boy   总被引:1,自引:0,他引:1  
An 8-year-old boy is reported with marked mental and physical retardation, microcephaly, hypertelorism, mongoloid palpebral fissures, hypoplasia of the maxillary portion of the face, and other discrete anomalies. Deletion of the distal portion of the short arm of the chromosome 1 and the karyotype 46,XY, del(1)(p33----pter) was detected.  相似文献   

12.
Summary A tiny interstitial delection of 7p was found in a 5-month-old boy with a craniosynostosis and many anomalies. His karyotype was 46,XY,del(7)(p15.3p21.3). Here we present not only further evidence of an association between craniosynostosis and 7p monosomy, but also deletion mapping to indicate that the critical segment for craniosynostosis lies in the mid-portion of 7p21, that is at 7p21.2 or the proximal part of 7p21.3.  相似文献   

13.
Smith-Magenis syndrome (SMS) and duplication 17p11.2 (dup17p11.2) syndrome are multiple congenital anomalies/mental retardation disorders resulting from either a deletion or duplication of the 17p11.2 region, respectively. The retinoic acid induced 1 (RAI1) gene is the causative gene for SMS and is included in the 17p11.2 region of dup17p11.2 syndrome. Currently SMS and dup17p11.2 syndrome are diagnosed using a combination of clinically recognized phenotypes and molecular cytogenetic analyses such as fluorescent in situ hybridization (FISH). However, these methods have proven to be highly expensive, time consuming, and dependent upon the low resolving capabilities of the assay. To address the need for improved diagnostic methods for SMS and dup17p11.2 syndrome, we designed a quantitative real-time PCR (Q-PCR) assay that measures RAI1 copy number using the comparative C(t) method, DeltaDeltaC(t). We tested our assay with samples blinded to their previous SMS or dup17p11.2 syndrome status. In all cases, we were able to determine RAI1 copy number status and render a correct diagnosis accordingly. We validated these results by both FISH and multiplex ligation-dependent probe amplification (MLPA). We conclude that Q-PCR is an accurate, reproducible, low-cost, and reliable assay that can be employed for routine use in SMS and dup17p11.2 diagnosis.  相似文献   

14.
This report concerns the case of a boy with partial trisomy 16p resulting from the insertional translocation of the short arm of chromosome 16 into the long arm of chromosome 1 in his father. He was referred for genetic testing because of mental retardation, short stature, microcephaly, seizures and multiple dysmorphic features. Chromosome analysis performed in the child demonstrated the presence of additional material in the long arm of chromosome 1. Paternal high resolution chromosome analysis and fluorescence in situ hybridisation revealed the following karyotype: 46,XY,ins(1;16)(q42;p13.1p13.3), while the karyotype of the boy is 46,XY,der(1),ins(1;16)(q42;p13.1p13.3)pat. This is the first reported case of partial trisomy 16p due to paternal insertional translocation.  相似文献   

15.
We report on a small de novo interstitial deletion of the short arm of chromosome 20, 46,XY,del(20)(p12.3p13), in a young boy with hypotonia, moderate development delay, mild facial dysmorphism and severe growth failure. This patient did not show major features of Alagille-Watson Syndrome (AWS) which are common in more proximal 20p deletions. Standard and high resolution chromosome banding analysis revealed an apparent terminal deletion. Nevertheless, using chromosomal fluorescent in situ hybridization (FISH) and molecular analysis with polymorphic markers, we demonstrated that the abnormal chromosome resulted from a de novo interstitial deletion of paternal origin spanning from D20S842 to D20S900 and covering approximately 6 Mb. These findings indicate that a karyotype can lead to insufficient characterization of an apparently terminal deletion, and that one or a few genes in 20p13-->p12.3 bands are important for normal growth.  相似文献   

16.
We report on a 16-month-old boy presenting with psychomotor retardation, craniofacial anomalies and severe vision deficit. Analysis of GTG-banded chromosomes showed that the patient had extra chromosomal material in the long arm of one chromosome 20. This chromosome aberration was further characterized with FISH using a chromosome 20 specific paint and band-specific probes. A partial trisomy 20q was shown to be present, the karyotype being 46, XY, dup (20) (q11.2q12). The cytogenetic and clinical findings are compared with cases previously reported in the literature.  相似文献   

17.
An 8-year-old boy presenting with hypotonia, moderate mental retardation, developmental delay, and psychomotor retardation is reported. Magnetic resonance imaging of the brain at age 3 years revealed a Dandy-Walker variant. Cytogenetic analysis of the peripheral blood revealed a derivative chromosome 12 with unknown additional material attached to the distal region of the long arm of chromosome 12. The parental karyotypes were normal. Spectral karyotyping (SKY) using the 24-color SKY probes and fluorescence in situ hybridization (FISH) using the specific 7p, 7q, 12p, and 12q telomeric probes confirmed a duplication of distal 7p and a deletion of terminal 12q. The karyotype of the proband was designated as 46,XY.ish der(12)t(7;12) (p21.2;q24. 33)(SKY+, 7pTEL+, 12qTEL-). The present case provides evidence for the association of partial trisomy 7p (7p21.2-->pter) and partial monosomy 12q (12q24.33-->qter) with a cerebellar malformation and the usefulness of SKY and FISH in the identification of a de novo aberrant chromosome resulting from an unbalanced translocation.  相似文献   

18.
We report a healthy woman with two abortions who is a carrier for a rare heterozygous double recombinant of an inv(5) chromosome, karyotype 46,XX,rec(5)dup(5p) inv(5)(p13q22),rec(5)dup(5q)inv(5)(p13q22). Her father had a 46,XY,inv(5)(p13q22) karyotype; his consanguineous wife had died. Molecular investigation of 11 highly polymorphic markers spanning chromosome 5 revealed biparental inheritance for two markers (D5S406, D5S681) on 5p15.3 and 5q13.1, and an allele constellation not compatible with paternal heterodisomy for marker D5S623 on 5q11.2. Eight markers were not informative. Three mechanisms of formation are proposed: First, fertilization of a normal oocyte by a sperm carrying the two recombinant chromosomes 5, followed by postzygotic recombination between the normal maternal homologue and the rec(5)dup(5p), and by loss of the mitotically recombined maternal homologue, leading to segmental paternal heterodisomy 5q13-->qter (trisomic rescue). Second, postzygotic recombination in a 46,XX,inv(5)(p13q22) zygote resulting in the 46,XX,rec(5)dup(5p)inv(5)(p13q22),rec(5) dup(5q)inv(5)(p13q22) karyotype, followed by absence of the original cell line in lymphocytes. Third and most likely, both parents were inv(5) carriers and complementary recombinations in maternal and paternal meiosis resulted in a zygote with two recombinant chromosomes 5. Our patient refused any further studies but later reported the birth of a phenotypically normal child. This is the first report known to us of complementation by two non-homologous recombinant chromosomes in a phenotypically normal woman, and the first example of a child born to a carrier of complementary recombinant chromosomes.  相似文献   

19.
A female patient with mosaicism for partial monosomy 8p and partial trisomy 8p is presented. Her karyotype is 46,XX, del(8)(p21)/46,XX, dup(8)(p21----pter). She showed minimal dysmorphic features, agenesis of the corpus callosum and moderate developmental delay. There is no previous report of mosaicism for partial monosomy and partial trisomy 8p. The clinical findings in the presently described patient are less severe than those reported in cases with only monosomy or trisomy of the distal part of chromosome 8.  相似文献   

20.
A 4 1/2 years old boy was found to have hypoplasia of the pectoralis major right muscle and a karyotype 46,XY,inv(5)(p13q13)mat. This inversion, probably independent of the boy's malformation, was present in at least four generations and it seems neither to impair fertility nor to yield viable recombinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号