首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An as-yet-unidentified mutation, Y-linked autoimmune acceleration (Yaa), is responsible for the accelerated development of lupus-like autoimmune syndrome in mice. In view of a possible role for Yaa as a positive regulator of BCR signaling, we have explored whether the expression of the Yaa mutation affects the development and activation of transgenic autoreactive B cells expressing either 4C8 IgM anti-RBC or Sp6 IgM anti-DNA. In this study, we show that the expression of the Yaa mutation induced a lethal form of autoimmune hemolytic anemia in 4C8 transgenic C57BL/6 mice, likely as a result of activation of 4C8 anti-RBC autoreactive B cells early in life. This was further supported, although indirectly, by increased T cell-independent IgM production in spleens of nontransgenic C57BL/6 mice bearing the Yaa mutation. In contrast, Yaa failed to induce activation of Sp6 anti-DNA autoreactive B cells, consistent with a lack of increased IgM anti-DNA production in nontransgenic C57BL/6 Yaa mice. Our results suggest that Yaa can activate autoreactive B cells in a BCR-dependent manner, related to differences in the form and nature of autoantigens.  相似文献   

2.
The accelerated development of systemic lupus erythematosus (SLE) in BXSB male mice is associated with the presence of the Y-linked autoimmune acceleration (Yaa) mutation, which induces an age-dependent monocytosis. Using a cohort of C57BL/6 (B6) x (NZB x B6)F1 backcross male mice bearing the Yaa mutation, we defined the pathogenic role and genetic basis for Yaa-associated monocytosis. We observed a remarkable correlation of monocytosis with autoantibody production and subsequent development of lethal lupus nephritis, indicating that monocytosis is an additional useful indicator for severe SLE. In addition, we identified an NZB-derived locus on chromosome 1 predisposing to the development of monocytosis, which peaked at Fcgr2b encoding FcgammaRIIB and directly overlapped with the previously identified NZB autoimmunity 2 (Nba2) locus. The contribution of Nba2 to monocytosis was confirmed by the analysis of Yaa-bearing B6 mice congenic for the NZB-Nba2 locus. Finally, we observed a very low-level expression of FcgammaRIIB on macrophages bearing the NZB-type Fcgr2b allele, compared with those bearing the B6-type allele, and the development of monocytosis in FcgammaRIIB haploinsufficient B6 mice carrying the Yaa mutation. These data suggest that the Nba2 locus may play a supplementary role in the pathogenesis of SLE by promoting the development of monocytosis and the activation of effector cells bearing stimulatory FcgammaR, in addition to its implication in the dysregulated activation of autoreactive B cells.  相似文献   

3.
FcgammaR2B-deficient mice develop autoantibodies and glomerulonephritis with a pathology closely resembling human lupus when on the C57BL/6 (B6) background. The same mutation on the BALB/c background does not lead to spontaneous disease, suggesting differences in lupus susceptibility between the BALB/c and B6 strains. An F2 genetic analysis from a B6/BALB cross identified regions from the B6 chromosomes 12 and 17 with positive linkage for IgG autoantibodies. We have generated a congenic strain that contains the suppressor allele from the BALB/c chromosome 12 centromeric region (sbb2(a)) in an otherwise B6.FcgammaR2B(-/-) background. None of the B6.FcgammaR2B(-/-)sbb2(a/a) mice tested have developed IgG autoantibodies in the serum or autoimmune pathology. Mixed bone marrow reconstitution experiments indicate that sbb2(a) is expressed in non-B bone marrow-derived cells and acts in trans. sbb2(a) does not alter L chain editing frequencies of DNA Abs in the 3H9H/56R H chain transgenic mice, but the level of IgG2a anti-DNA Abs in the serum is reduced. Thus, sbb2(a) provides an example of a non-MHC lupus-suppressor locus that protects from disease by restricting the production of pathogenic IgG isotypes even in backgrounds with inefficient Ab editing checkpoints.  相似文献   

4.
Immune complex (IC)-mediated tissue inflammation is controlled by stimulatory and inhibitory IgG Fc receptors (FcgammaRs). Systemic lupus erythematosus is a prototype of IC-mediated autoimmune disease; thus, imbalance of these two types of FcgammaRs is probably involved in pathogenesis. However, how and to what extent each FcgammaR contributes to the disease remains unclear. In lupus-prone BXSB mice, while stimulatory FcgammaRs are intact, inhibitory FcgammaRIIB expression is impaired because of promoter region polymorphism. To dissect roles of stimulatory and inhibitory FcgammaRs, we established two gene-manipulated BXSB strains: one deficient in stimulatory FcgammaRs (BXSB.gamma(-/-)) and the other carrying wild-type Fcgr2b (BXSB.IIB(B6/B6)). The disease features were markedly suppressed in both mutant strains. Despite intact renal function, however, BXSB.gamma(-/-) had IC deposition in glomeruli associated with high-serum IgG anti-DNA Ab levels, in contrast to BXSB.IIB(B6/B6), which showed intact renal pathology and anti-DNA levels. Lymphocytes in BXSB.gamma(-/-) were activated, as in wild-type BXSB, but not in BXSB.IIB(B6/B6). Our results strongly suggest that both types of FcgammaRs in BXSB mice are differently involved in the process of disease progression, in which, while stimulatory FcgammaRs play roles in effecter phase of IC-mediated tissue inflammation, the BXSB-type impaired FcgammaRIIB promotes spontaneous activation of self-reactive lymphocytes and associated production of large amounts of autoantibodies and ICs.  相似文献   

5.
Although mice from almost all inbred strains produce IgM anti-DNA antibody in response to B cell mitogens, only (NZB x NZW)F1 mice and mice from other strains that are genetically predisposed to autoimmunity spontaneously produce anti-DNA antibody of the IgG isotype. Because (NZB x NZW)F1 mice display marked B cell hyperactivity, anti-DNA antibody production in these mice has been thought to result from spontaneous, polyclonal B cell activation. Although this may be true for IgM anti-DNA antibodies, our results demonstrate that IgG anti-DNA antibodies are not polyclonal. Rather, IgG anti-DNA autoantibodies within an individual autoimmune mouse are oligoclonal and somatically mutated. These results demonstrate that IgG anti-DNA autoantibodies are the products of clonally selective B cell stimulation and exhibit the same characteristics as secondary immune antibodies to conventional immunogens: they are IgG, they are clonally restricted, and they are somatically mutated.  相似文献   

6.
High levels of the retroviral envelope protein gp70 and gp70 immune complexes have been linked to a single locus on chromosome 13 (Bxs6) in the BXSB model, to which linkage of nephritis was also seen. Congenic lines containing the BXSB Bxs6 interval on a non-autoimmune C57BL/10 background were bred in the presence or absence of the BXSB Y chromosome autoimmune accelerator gene (Yaa), which accelerates disease in male mice. In these mice, we have shown that Bxs6 is sufficient to cause high-level expression of gp70 and the production of gp70 autoantibodies, independently of Yaa, with gp70 immune complex levels enhanced by Yaa. In the presence of Yaa, Bxs6 also causes mild nephritis, and interestingly the sporadic production of high levels of anti-DNA Abs in some mice. Fine mapping using rare recombinant mice suggested that Bxs6 lies between 59.7 and 74.8 megabases (Mb), although the interval of 0.6 Mb between 73.6 and 78.6 Mb on chromosome 13 cannot be excluded in this study.  相似文献   

7.
Lupus-prone, anti-DNA, heavy (H) chain "knock-in" mice were obtained by backcrossing C57BL/6 mice, targeted with a rearranged H chain from a VH11(S107)-encoded anti-DNA hybridoma (D42), onto the autoimmune genetic background of New Zealand Black/New Zealand White (NZB/NZW) F1 mice. The targeted female mice developed typical lupus serologic manifestations, with the appearance of transgenic IgM anti-DNA autoantibodies at a young age (2-3 mo) and high affinity, somatically mutated IgM and IgG anti-DNA Abs at a later age (6-7 mo). However, they did not develop clinical, lupus-associated glomerulonephritis and survived to at least 18 mo of age. L chain analysis of transgenic anti-DNA Abs derived from diseased NZB/NZW mouse hybridomas showed a very restricted repertoire of Vkappa utilization, different from that of nonautoimmune (C57BL/6 x BALB/c)F1 transgenic anti-DNA Abs. Strikingly, a single L chain was repetitively selected by most anti-DNA, transgenic NZB/NZW B cells to pair with the targeted H chain. This L chain had the same Vkappa-Jkappa rearrangement as that expressed by the original anti-DNA D42 hybridoma. These findings indicate that the kinetics of the autoimmune serologic manifestations are similar in wild-type and transgenic lupus-prone NZB/NZW F1 mice and suggest that the breakdown of immunologic tolerance in these mice is associated with the preferential expansion and activation of B cell clones expressing high affinity anti-DNA H/L receptor combinations.  相似文献   

8.
9.
10.
The accelerated development of systemic lupus erythematosus (SLE) in male BXSB mice is associated with the genetic abnormality in its Y chromosome, designated Yaa (Y-linked autoimmune acceleration). Recently, the Yaa mutation was identified to be a translocation from the telomeric end of the X chromosome (containing the gene encoding TLR7) onto the Y chromosome. In the present study, we determined whether the Tlr7 gene duplication is indeed responsible for the Yaa-mediated acceleration of SLE. Analysis of C57BL/6 mice congenic for the Nba2 (NZB autoimmunity 2) locus (B6.Nba2) bearing the Yaa mutation revealed that introduction of the Tlr7 null mutation on the X chromosome significantly reduced serum levels of IgG autoantibodies against DNA and ribonucleoproteins, as well as the incidence of lupus nephritis. However, the protection was not complete, because these mice still developed high titers of anti-chromatin autoantibodies and retroviral gp70-anti-gp70 immune complexes, and severe lupus nephritis, which was not the case in male B6.Nba2 mice lacking the Yaa mutation. Moreover, we found that the Tlr7 gene duplication contributed to the development of monocytosis, but not to the reduction of marginal zone B cells, which both are cellular abnormalities causally linked to the Yaa mutation. Our results indicate that the Yaa-mediated acceleration of SLE as well as various Yaa-linked cellular traits cannot be explained by the Tlr7 gene duplication alone, and suggest additional contributions from other duplicated genes in the translocated X chromosome.  相似文献   

11.
After exposure to subtoxic doses of heavy metals such as mercury, H-2(s) mice develop an autoimmune syndrome consisting of the rapid production of IgG autoantibodies that are highly specific for nucleolar autoantigens and a polyclonal increase in serum IgG1 and IgE. In this study, we explore the role of two inhibitory immunoreceptors, CTLA-4 and FcgammaRIIB, in the regulation of mercury-induced autoimmunity. In susceptible mice treated with mercuric chloride (HgCl(2)), administration of a blocking anti-CTLA-4 Ab resulted in a further increase in anti-nucleolar autoantibodies and in total serum IgG1 levels. Furthermore, in some DBA/2 mice, which are normally resistant to heavy metal-induced autoimmunity, anti-CTLA-4 treatment leads to the production of anti-nucleolar Abs, thereby overcoming the genetic restriction of the disease. In mice deficient for the FcgammaRIIB, HgCl(2) administration did not trigger autoantibody production, but resulted in an increase in IgE serum levels. Taken together, these results indicate that different inhibitory mechanisms regulate various manifestations of this autoimmune syndrome.  相似文献   

12.
Murine acquired immunodeficiency syndrome (MAIDS) is characterized by lymphoproliferation, polyclonal B cell activation resulting in the production of autoantibodies, and a progressive immunodeficiency. These are all hallmarks of some autoimmune diseases. Yaa is a Y-chromosome-linked gene that accelerates autoimmune diseases in some autoimmune-prone strains of mice. To further elucidate a possible relationship with autoimmunity, the effect of the Yaa gene on MAIDS was investigated. Analysis of phenotypic and functional disease parameters revealed that Yaa does not accelerate MAIDS disease. This is probably due to the generalized activation of most or all lymphoid cells in MAIDS, which cannot be enhanced by the Yaa gene. This result is in accordance with the selective enhancing effect of the Yaa gene on the immune response against self and foreign antigens in a specific genetic background. It suggests that the autoimmune response associated with MAIDS is a secondary phenomenon. Interestingly, even in wild-type C57BL/6 mice, autoantibody production may contribute overproportionally to the hypergammaglobulinemia associated with MAIDS.  相似文献   

13.
By assessing the development of Y-linked autoimmune acceleration (Yaa) gene-induced systemic lupus erythematosus in C57BL/6 (B6) x (New Zealand Black (NZB) x B6.Yaa)F(1) backcross male mice, we mapped three major susceptibility loci derived from the NZB strain. These three quantitative trait loci (QTL) on NZB chromosomes 1, 7, and 13 differentially regulated three different autoimmune traits: anti-nuclear autoantibody production, gp70-anti-gp70 immune complex (gp70 IC) formation, and glomerulonephritis. Contributions to the disease traits were further confirmed by generating and analyzing three different B6.Yaa congenic mice, each carrying one individual NZB QTL. The chromosome 1 locus that overlapped with the previously identified Nba2 (NZB autoimmunity 2) locus regulated all three traits. A newly identified chromosome 7 locus, designated Nba5, selectively promoted anti-gp70 autoantibody production, hence the formation of gp70 IC and glomerulonephritis. B6.Yaa mice bearing the NZB chromosome 13 locus displayed increased serum gp70 production, but not gp70 IC formation and glomerulonephritis. This locus, called Sgp3 (serum gp70 production 3), selectively regulated the production of serum gp70, thereby contributing to the formation of nephritogenic gp70 IC and glomerulonephritis, in combination with Nba2 and Nba5 in NZB mice. Among these three loci, a major role of Nba2 was demonstrated, because B6.Yaa Nba2 congenic male mice developed the most severe disease. Finally, our analysis revealed the presence in B6 mice of an H2-linked QTL, which regulated autoantibody production. This locus had no apparent individual effect, but most likely modulated disease severity through interaction with NZB-derived susceptibility loci.  相似文献   

14.
An in vitro system was designed to measure anti-DNA antibody synthesis, and the cellular basis of this autoantibody production in NZB X NZW (B/W)F1 (B/W F1) mice was analyzed. The spleen cells from old B/W F1 mice contained a number of B cells that spontaneously produced anti-DNA antibodies of both IgM and IgG classes in the absence of stimulants, thereby demonstrating that these B cells had been activated in vivo. These activated B cells could be removed by Sephadex G-10 column (G-10) filtration. Such G-10-passed, homogeneously small B cells were activated by the stimulant lipopolysaccharide (LPS) and produced both IgM and IgG class anti-DNA antibodies. The G-10-passed cells contained both B and T cells, and the cytotoxic treatment of the cells with monoclonal antibodies to T cells, anti-Thy-1 and anti-L3T4, abolished the LPS-induced IgG class, but not IgM class, anti-DNA antibody syntheses. Thus, the LPS-induced production of IgG class anti-DNA antibodies in B/W F1 mice is regulated by T cells. Reconstitution experiments revealed the requirement of T-B cell contact but not of the proliferative response of T cells. Moreover, there was no apparent adherent cell requirement. Such IgG class anti-DNA antibodies were produced only by spleen cells from old B/W F1 mice, but not from young B/W F1, NZB, NZW, and C57BL/6 mice. Like IgM class anti-DNA antibodies, LPS-induced synthesis of polyclonal IgM was T cell-independent. Only a slight reduction in the polyclonal IgG synthesis was observed after the G-10-passed cells had been treated with anti-Thy-1 antibody plus complement. This study should facilitate investigation of cell to cell interactions in the formation of autoantibodies and their correlations to immunologic abnormalities in autoimmune disease.  相似文献   

15.
16.
The low-affinity FcR for IgG FcgammaRIIB suppresses the development of IgG autoantibodies and autoimmune disease in normal individuals, but how this effect is mediated is incompletely understood. To investigate this issue, we created FcgammaRIIB-deficient versions of two previously described targeted BCR-transgenic lines of mice that contain follicular B cells with specificity for the hapten arsonate, but with different levels of antinuclear autoantigen reactivity. The primary development and tolerance of both types of B cells were unaltered by the absence of FcgammaRIIB. Moreover, the reduced p-azophenylarsonate-driven germinal center and memory responses characteristic of the highly autoreactive clonotype were not reversed by an intrinsic FcgammaRIIB deficiency. In contrast, the p-azophenylarsonate-driven primary Ab-forming cell responses of both clonotypes were equivalently increased by such a deficiency. In total, our data do not support the idea that FcgammaRIIB directly participates in the action of primary or germinal center tolerance checkpoints. In contrast, this receptor apparently contributes to the prevention of autoimmunity by suppressing the production of autoreactive IgGs from B cells that have breached tolerance checkpoints and entered the Ab-forming cell pathway due to spontaneous, or cross-reactive, Ag-mediated activation.  相似文献   

17.
IgM rheumatoid factors in mice injected with bacterial lipopolysaccharides.   总被引:36,自引:0,他引:36  
Bacterial lipopolysaccharides (LPS) induced the formation of IgM rheumatoid factors (RF) in several strains of mice including athymic C57BL/6 nude mice, but not in the LPS-resistant C3H/HeJ mice. The RF induced by LPS reacted not only with murine IgG but also with IgG from cows, goats, guinea pigs, and humans. The kinetics of this RF response to injection of LPS were similar to those of antibody response against DNA and a hapten, dinitrophenyl (DNP), and to those of total IgM production. In addition, the RF activity of individual serum samples correlated significantly with levels of anti-DNA and anti-DNP antibodies and of IgM. Therefore, it is concluded that the induction of RF results from polyclonal antibody synthesis by B cells stimulated with LPS. This observation suggests that LPS or LPS-like substances may help to generate RF in patients with rheumatoid arthritis or with some infectious diseases.  相似文献   

18.
The H and L chain V region sequences of nine anti-DNA mAb that are representative of a pathogenic population of autoantibodies produced by the nephritis prone (SWR x NZB)F1 (SNF1) mice, were determined. These nine anti-DNA autoantibodies were idiotypically connected members of a cross-reactive Id family called the Id564 cluster. Moreover, these autoantibodies were all cationic in charge, IgG2b in isotype, and their H chain C regions had the normal SWR parent's allotype. Although derived from two different SNF1 animals, these pathogenic autoantibodies possessed highly homologous Leader-VH sequences that could account for their idiotypic cross-reactivity. Furthermore, the VH region sequences of these anti-DNA antibodies contained numerous basic residues that could impart their cationic charge. The Leader-VH sequences of these autoantibodies were also highly homologous to that of an anti-NP antibody-related germ-line gene of C57BL/6 mice, called VH-23. Among these nine pathogenic autoantibodies, three sets of clonally related anti-DNA antibodies could be identified. Thus the Id564 cluster of cationic anti-DNA autoantibodies of SNF1 mice are encoded by highly related VH genes, and this idiotypically connected population of pathogenic autoantibodies are selected to undergo an oligoclonal expansion in the lupus-prone SNF1 mice.  相似文献   

19.
The processing and presentation of Ag by Ag-specific B cells is highly efficient due to the dual function of the B cell Ag receptor (BCR) in both signaling for enhanced processing and endocytosing bound Ag. The BCR for IgG (FcgammaRIIB1) is a potent negative coreceptor of the BCR that blocks Ag-induced B cell proliferation. Here we investigate the influence of the FcgammaRIIB1 on BCR-mediated Ag processing and show that coligating the FcgammaRIIB1 and the BCR negatively regulates both BCR signaling for enhanced Ag processing and BCR-mediated Ag internalization. Treatment of splenic B cells with F(ab')2 anti-Ig significantly enhances APC function compared with the effect of whole anti-Ig; however, whole anti-Ig treatment is effective when binding to the FcgammaRIIB1 was blocked by a FcgammaRII-specific mAb. Processing and presentation of Ag covalently coupled to anti-Ig were significantly decreased compared with Ag coupled to F(ab')2anti-Ig; however, the processing of the two Ag-Ab conjugates was similar in cells that did not express FcgammaRIIB1 and in splenic B cells treated with a FcgammaRII-specific mAb to block Fc binding. Internalization of monovalent Ag by B cells was reduced in the presence of whole anti-Ig as compared with F(ab')2 anti-Ig, but the internalized Ag was correctly targeted to the class II peptide loading compartment. Taken together, these results indicate that the FcgammaRIIB1 is a negative regulator of the BCR-mediated Ag-processing function.  相似文献   

20.
Natural Abs have been implicated in initiating mesenteric ischemia/reperfusion (I/R)-induced tissue injury. Autoantibodies have affinity and self-Ag recognition patterns similar to natural Abs. We considered that autoimmunity-prone mice that express high titers of autoantibodies should have enhanced I/R-induced injury. Five-month-old B6.MRL/lpr mice displayed accelerated and enhanced intestinal I/R-induced damage compared with 2-mo-old B6.MRL/lpr and age-matched C57BL/6 mice. Similarly, older autoimmune mice had accelerated remote organ (lung) damage. Infusion of serum IgG derived from 5-mo-old but not 2-mo-old B6.MRL/lpr into I/R resistant Rag-1-/- mice rendered them susceptible to local and remote organ injury. Injection of monoclonal IgG anti-DNA and anti-histone Abs into Rag-1-/- mice effectively reconstituted tissue injury. These data show that like natural Abs, autoantibodies, such as anti-dsDNA and anti-histone Abs, can instigate I/R injury and suggest that they are involved in the development of tissue damage in patients with systemic lupus erythematosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号