首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coexistence of a native and invasive species may be possible at certain conditions along an environmental gradient where the individual responses of each species are maximally apart. Water temperature may differentially affect the growth of a native cool-water species like the Barrens topminnow, Fundulus julisia, and an originally warm-water adapted western mosquitofish, Gambusia affinis, who is a recent invader in Barrens Plateau region of middle Tennessee. We measured the specific growth rate (SGR) of the two species separately in laboratory aquaria at 10, 15, 20 and 25 °C, representing a range of temperatures that occur in topminnow habitats throughout the year. Both species grew faster with increasing temperature and SGRs were highest at 25 °C. The interspecific difference in SGR was maximized at 15 °C. At this temperature, mean growth rate of topminnows was 0.78% per day, more than twice that of mosquitofish (0.38% per day). These results suggest that cool springhead habitats with a near-constant thermal environment of 15 °C throughout the year may provide a growth advantage to the Barrens topminnow over the mosquitofish. Other environmental, density-dependent, or behavioral factors not examined here may act along with temperature to mediate the coexistence of the topminnow and mosquitofish.  相似文献   

2.
Mills MD  Rader RB  Belk MC 《Oecologia》2004,141(4):713-721
We suggest that the ultimate outcome of interactions between native species and invasive species (extinction or coexistence) depends on the number of simultaneous negative interactions (competition and predation), which depends on relative body sizes of the species. Multiple simultaneous interactions may constrain the ability of native species to trade fitness components (i.e., reduced growth for reduced risk of predation) causing a spiral to extinction. We found evidence for five types of interactions between the adults and juveniles of introduced western mosquitofish (Gambusia affinis) and the juveniles of native least chub (Iotichthys phlegethontis). We added ten large (23–28 mm) and seven small (9–13 mm) young-of-the-year (YOY) least chub to replicate enclosures with zero, low, and high densities of mosquitofish in a desert spring ecosystem. Treatments with mosquitofish reduced the average survival of least chub by one-third. No small YOY least chub survived in enclosures with high mosquitofish densities. We also performed two laboratory experiments to determine mortality to predation, aggressiveness, and habitat selection of least chub in the presence of mosquitofish. Mean mortality of least chub due to predation by large mosquitofish was 69.7% over a 3-h trial. Least chub were less aggressive, selected protected habitats (Potamogeton spp.), and were more stationary in the presence of mosquitofish where the dominance hierarchy was large mosquitofish>>large least chubsmall mosquitofish>>small least chub. Least chub juveniles appear to be figuratively caught in a vice. Rapid growth to a size refuge could reduce the risk of predation, but the simultaneous effects of competition decreased least chub growth and prolonged the period when juveniles were vulnerable to mosquitofish predation.  相似文献   

3.
There has been controversy over the species status of Sonoran topminnows and debate about the presence of ESUs in the Gila topminnow. From examination of sequence variation at 2626 base pairs over three mtDNA genes, we found a 29 (1.1%) nucleotide genetic difference between Gila and Yaqui topminnows. This provides strong support that these two taxa are separate species, Poeciliopsis occidentalis (Gila topminnow) and P. sonoriensis (Yaqui topminnow) and have been separated for approximately one million years. All the Gila topminnows within Arizona have the same sequence for the three mtDNA genes, that is, there is not reciprocal monophyly for mtDNA sequence data for the two previously designated ESUs. However, evidence of the unique habitat for Monkey Spring, its long-term isolation from other Gila topminnow habitats, and the presence of unique fish and invertebrate taxa in Monkey Spring support the designation of the Monkey Spring topminnows as an ESU. Finally, theoretical considerations using molecular data and estimates of heterozygosity and genetic distance for nuclear genes between populations of the Gila topminnow show that the lack of mtDNA variation is not inconsistent with the level and pattern of nuclear genetic variation observed.  相似文献   

4.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

5.
The interplay of abiotic factors and competition has a long history in ecology, although there are very few studies on the interaction of salinity and competition in fish. Mosquitofish (Gambusia holbrooki) are among the most invasive fish worldwide, with well documented ecological impacts on several taxa such as amphibians and small native fish. It has been previously hypothesized, based on field observations, that salinity limits the invasive success of mosquitofish and provides a competitive refuge for Mediterranean cyprinodonts. We experimentally tested this hypothesis by examining the agonistic behaviour and food competition between mosquitofish and an endangered native cyprinodont (Aphanius fasciatus) at three salinities (0, 15, 25‰). Intraspecific aggressive behaviour for both species was not significantly affected by salinity. As salinity increased, mosquitofish decreased their aggressive behaviour towards cyprinodonts and captured less prey. In contrast, the cyprinodonts did not change their behaviour with different salinity treatments, with the possible exception of increased defensive acts in higher salinities, but captured more prey with increasing salinity because of the reduced efficiency of mosquitofish. Our study confirms previous field observations that salinity limits the invasive success of mosquitofish and provides one of the few experimental demonstrations that it may mediate behavioural and competitive interactions between fish species. Condition-specific competition of mosquitofish might be expected with other species and ecosystems worldwide and illustrates the importance of integrating biotic and abiotic factors in the study of interspecific interactions.  相似文献   

6.
Predation can have strong direct and indirect effects on the behavior of prey. We investigated whether predation by chain pickerel (Esox niger) caused adult eastern mosquitofish (Gambusia holbrooki) to alter their habitat use and whether pickerel predation influenced survival of adult and neonate mosquitofish. The number of adult mosquitofish using the riskier of three habitats was lowest when two predators occupied the risky habitat, intermediate in the treatment with one predator, and highest when no predators occurred there. More mosquitofish neonates survived high predation treatments than treatments lacking pickerel. We conclude that pickerel predation causes adult mosquitofish to shift to refuge habitats. The pattern of neonate survival suggests that adult habitat use may create a refuge from cannibalism for neonate mosquitofish, resulting in higher neonate survival in treatments with more pickerel. Hence, pickerel predation has a direct effect on adult mosquitofish behavior and a strong indirect effect on neonate survival. Both interspecific and intraspecific predation can effect prey populations and can interact to produce important indirect effects.  相似文献   

7.
Larvivorous fishes fail to control mosquitoes in experimental rice plots   总被引:1,自引:1,他引:0  
Leon Blaustein 《Hydrobiologia》1992,232(3):219-232
The individual and interactive effects of mosquitofish (Gambusia affinis Baird and Girard) and green sunfish (Lepomis cyanellus Rafinesque) populations on densities of mosquito immatures and other aquatic fauna were assessed in experimental rice plots over a 12 week period. Mosquitofish, stocked at a much higher rate (2318 per ha) than is usually used in commercial rice fields, increased 88-fold in numbers per minnow trap over a ten week period. Adult green sunfish (7–10 cm TL), stocked at the same rate as mosquitofish, reproduced in the rice plots, but reproductive success was strongly associated with plot depth. Mosquitofish numbers were significantly lower in plots stocked with green sunfish early in the season but this difference soon disappeared. Significant reductions in densities of the immature stages of the mosquito, Culex tarsalis Coquillet, by the fishes were not demonstrated by analyses of variance and covariance (mosquitofish may have provided some control during the very last week [Blaustein, 1990]). Populations of the mosquito, Anopheles freeborni Aitken, were not significantly reduced by mosquitofish except during the last week. A. freeborni populations were significantly higher in the green sunfish treatment than in the control and mosquitofish treatment. Numbers of notonectids (predators of mosquitoes) were depressed in all fish treatments. This may have indirectly contributed to the ineffectiveness of the fishes to control mosquitoes. Other invertebrate predators of mosquitoes were not reduced significantly by the fishes. Similarly, these fishes had little effect on microcrustaceans and chironomids. These fauna, by serving as alternative prey, may have reduced predation intensity on mosquitoes. These results demonstrate that high stocking rates and high population growth of mosquitofish will not necessarily provide control of mosquitoes in rice fields.  相似文献   

8.
Invasion of habitats by exotic shrubs is often associated with a decrease in the abundance of native species, particularly trees. This is typically interpreted as evidence for direct resource competition between the invader and native species. However, this may also reflect indirect impacts of the exotic shrubs through harboring high densities of seed predators––known as apparent competition. Here I present data from separate seed predation experiments conducted with two shrub species exotic to North America; Rosa multiflora, an invader of abandoned agricultural land, and Lonicera maackii, an invader of disturbed or secondary forest habitats. Both experiments showed significantly greater risks of seed predation for tree seeds located under shrub canopies when compared to open microhabitats within the same site. These results indicate the potential importance of indirect impacts of exotic species invasions on native biota in addition to the direct impacts that are typically the focus of research.  相似文献   

9.
10.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

11.
Major impacts of biological invasions are widely recognized and underscore the need to understand the relation between life-history traits of invasive species and the invasion process. Growth of juveniles and adult survival of invasive species are key factors in invasion process. Life-history traits that increase juvenile fitness including increased rates of development and behavioral characteristics that facilitate competitive success such as increased predator efficiency and foraging ability may explain invasiveness of a species. Invasion of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) in North America provides an opportunity to investigate life-history traits of juveniles of an invasive species. Here, we evaluate both developmental and behavioral traits that may explain the success of H. axyridis by comparing it to an ecologically similar indigenous species Coleomegilla maculata lengi Timberlake (Coleoptera: Coccinellidae). Three points may contribute to the invasiveness of H. axyridis. First, development of H. axyridis was faster during the 2nd larval instar than C. maculata, a characteristic that may reduce vulnerability at young instars. Second, H. axyridis reached the 4th instar more rapidly than C. maculata. The 4th instar of H. axyridis was also characterized by higher predation efficiency with increased voracity, lethal contact and search efficiency of pea aphids Acyrthosiphon pisum. Finally, surprisingly, a 5th larval instar occured in 33% of the individuals of H. axyridis and was characterized by the same developmental time, but with increased voracity and weight gain compared to 4th larval instars, suggesting an increased fitness of these individuals. These developmental characteristics coupled with increased predation efficiency and behavioral characteristics enhanced the juvenile growth and predatory abilities of this species and may contribute to the invasive ability of H. axyridis.  相似文献   

12.
The potential impact of introduced species on rare taxa is of particular concern to conservation biologists. We evaluate the impacts of western mosquitofish (Gambusia affinis) and virile crayfish (Orconectes virilis) on experimental populations of a threatened species, the White Sands pupfish (Cyprinodon tularosa). Forty experimental pupfish populations were exposed to one of four treatments; (a) 1 crayfish, (b) 4 crayfish, (c) 5 adult mosquitofish and (d) control. Pupfish population size and biomass was monitored over the duration of one breeding season. A repeated measure multiple analysis of covariance revealed a significant effect of treatments on response variables (population size and biomass) (P<0.0001). Mosquitofish had a significant effect on population size and biomass (P=0.0330). The effect of one crayfish was not significant (P=0. 0683). However, 4 crayfish had a significant effect (P<0.0001) on population size. We use these data, along with information on environmental tolerances of crayfish and mosquitofish, to evaluate risks for specific pupfish populations. An erratum to this article is available at .  相似文献   

13.
Aim Western mosquitofish (Gambusia affinis) have been linked with the decline of native fish and amphibians throughout the world. Separation along the temperature niche axis may promote the long‐term coexistence of introduced western mosquitofish, with native species in temperate regions. Recent research has shown that western mosquitofish can reduce the recruitment of native least chub (Iothichthys phlegethontis) endemic to the Bonneville Basin. We tested the hypotheses that cold temperatures (≤ 15 °C in the summer, freezing winters) would: (1) reduce the aggressive and predatory effects of western mosquitofish on least chub, and (2) eliminate the overwinter survival and recruitment of western mosquitofish while having little effect on least chub recruitment. Location Bonneville Basin of Utah, USA. Methods We used short‐term tests in the laboratory at the level of individuals and manipulated temperature (warm, cold and seasonal treatments) in long‐term experiments using mesocosms at the population level. Results Cold temperatures (≤ 15 °C) reduced the aggression and predation of western mosquitofish on least chub at the level of individuals. At the population level, however, cool summers (≤ 15 °C) eliminated recruitment in both species because they required warm summers (c. 20–30 °C) to survive freezing winters. Although least chub had an overwinter advantage in survival (75% least chub, 45% western mosquitofish), it was overwhelmed by the rapid reproduction of western mosquitofish as temperatures increased in the summer. Main conclusions Studies at the level of populations are necessary to understand the ultimate effects of introduced species on native taxa. Separation along the temperature niche axis was not sufficient to promote coexistence between these species in habitats with warm summers (c. 30 °C). Although coexistence may be possible in habitats with cool summers (≤ 20 °C) and freezing winters, the ability of niche separation to promote long‐term coexistence between native and introduced species may ultimately depend on their respective rates of evolution. Long‐term coexistence may not be possible if introduced species can adapt to new environmental conditions faster than native species can evolve mechanisms to reduce their harmful effects.  相似文献   

14.
Introduced species have recently become a major concern in ecological research and aquatic conservation. This is due to an increasing appearance of introduced species at a global scale and a multitude of negative impacts on native biota. However, impacts of introduced species are not necessarily only negative. The epizootic American slipper limpet Crepidula fornicata, native at North American Atlantic shores, was introduced to Europe in the 1870s and is now widespread along the Atlantic coast of Europe. Negative effects like trophic and spatial competition have been reported. In its major basibiont in the Wadden Sea, the blue mussel Mytilus edulis, attached limpets reduce survival and growth. However, a laboratory experiment also showed sea star (Asterias rubens) predation on mussels with limpet epigrowth to be three times lower than in unfouled mussels. Hence, although negatively affected by C. fornicatain one way, this epigrowth is beneficial for fouled mussels in another. This indicates that the actual impact of an introduced species is a complex interplay of positive and negative effects which may only be revealed experimentally.  相似文献   

15.
Ortega YK  McKelvey KS  Six DL 《Oecologia》2006,149(2):340-351
Although exotic plant invasions threaten natural systems worldwide, we know little about the specific ecological impacts of invaders, including the magnitude of effects and underlying mechanisms. Exotic plants are likely to impact higher trophic levels when they overrun native plant communities, affecting habitat quality for breeding songbirds by altering food availability and/or nest predation levels. We studied chipping sparrows (Spizella passerina) breeding in savannas that were either dominated by native vegetation or invaded by spotted knapweed (Centaurea maculosa), an exotic forb that substantially reduces diversity and abundance of native herbaceous plant species. Chipping sparrows primarily nest in trees but forage on the ground, consuming seeds and arthropods. We found that predation rates did not differ between nests at knapweed and native sites. However, initiation of first nests was delayed at knapweed versus native sites, an effect frequently associated with low food availability. Our seasonal fecundity model indicated that breeding delays could translate to diminished fecundity, including dramatic declines in the incidence of double brooding. Site fidelity of breeding adults was also substantially reduced in knapweed compared to native habitats, as measured by return rates and shifts in territory locations between years. Declines in reproductive success and site fidelity were greater for yearling versus older birds, and knapweed invasion appeared to exacerbate differences between age classes. In addition, grasshoppers, which represent an important prey resource, were substantially reduced in knapweed versus native habitats. Our results strongly suggest that knapweed invasion can impact chipping sparrow populations by reducing food availability. Food chain effects may be an important mechanism by which strong plant invaders impact songbirds and other consumers.  相似文献   

16.
David A. Pyke 《Oecologia》1990,82(4):537-543
Summary Demographic characteristics associated with the maintenance and growth of populations, such as seed dynamics, seedling emergence, survival, and tiller dynamics were examined for two tussock grasses, the native Agropyron spicatum and the introduced Agropyron desertorum in a 30-month field study. The introduced grass was aerially sown onto a native grassland site. Seed production of the introduced grass was greater than the native grass in both above- and below-average precipitation years. Seeds of A. spicatum were dispersed when they mature, while A. desertorum retained some seeds in inflorescences, and dispersed them slowly throughout the year. This seed retention allowed some seeds of the introduced grass to escape peak periods of seed predation during the summer and allowed seeds to be deposited constantly into the seed bank. Carryover of seeds in the seed bank beyond one year occurred in the introduced grass but not in the native species. For both species, seedling emergence occurred in both autumn or spring. Survival rates for A. desertorum were higher than A. spicatum when seedlings emerged between November and March. Survival rates of cohorts emerging before November favored A. spicatum whereas survival rates did not differ between species for cohorts emerging after March. Individuals of both species emerging after April were unable to survive the summer drought. Demographic factors associated with seeds of A. desertorum seemed to favor the maintenance and spread of this introduced grass into native stands formerly dominated by A. spicatum.  相似文献   

17.
Studying historic invasions can provide insight into the ongoing invasions that threaten global biodiversity. In this study, we reconsider the impacts of Littorina littorea and Carcinus maenas on the rocky intertidal community of the Gulf of Maine. Past research using invader-removal experiments demonstrated strong top-down effects of L. littorea on algal community structure; however, such removal experiments may overlook the long-term effects of niche shifts and local extinctions caused by invasive species. We considered how a niche-shift in the native littorine, Littorina saxatilis, may change the interpretation of L. littorea impacts. Using a factorial experiment crossing predator presence/absence with L. littorea presence/absence, we found that L. saxatilis is able to exert top-down control on ephemeral algae similar to that exerted by L.␣littorea and that both competition by L. littorea and predation by C. maenas have strong, negative impacts on L. saxatilis. We also found higher predation rates on protected shores and at lower tidal heights and preferential predation on L.␣saxatilis compared to L. littorea. While movement experiments demonstrate that behavioral response to tidal height is the proximate cause of L. saxatilis exclusion from the lower intertidal, our study suggests that the ultimate causes are the additive effects of competition from and predation by invasive species.  相似文献   

18.
A semi-field experiment was carried out in two peach orchards in northern Italy to assess mortality due to predators and parasitoids on the exotic coccinellid Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in comparison with the native coccinellid Adalia bipunctata L. (Coleoptera: Coccinellidae). The experiments were conducted in cages to avoid the possible escape of the exotic ladybird (not yet established in Italy). Two kinds of cage experiments were included: ‘exclusion cages’ (access by walking predators impeded) and ‘free cages’ (walking predators free to enter). The cages, containing all the stages of the two ladybird species, were placed in two localities and left for 24 h. All ladybird stages used for the semi-field experiments came from a laboratory rearing. The eggs of H. axyridis experienced less mortality than those of A. bipunctata. The ant workers were the most frequent predators in ‘free cages’ but A. bipunctata cannibalism on eggs was also detected. Larvae of both coccinellid species were predated equally but larval predation of L1 and L2 was higher in comparison to predation of L3 and L4. Pupae and adults of both exotic and native ladybirds were never attacked by predators. Predation on younger larval stages was higher in the ‘free cages’ in comparison with ‘exclusion cages’. No ladybird parasitisation was observed. The ‘free cage’ technique seems to provide a standardised and realistic estimation of predation impact but more studies are needed to evaluate ladybird parasitisation in semi-field conditions.  相似文献   

19.
Population densities of invasive species fluctuate spatially and temporally, suggesting that the intensity of their aggressive interactions with native species is similarly variable. Although inter‐specific aggression is often thought to increase with population density, it is often theorized that it should be exceeded by intra‐specific aggression since conspecifics share a greater degree of resource overlap. Yet, the magnitude of intra‐specific aggression is seldom considered when examining aggressive interactions, particularly those between invasive and native species. Here, we manipulated the density of the invasive eastern mosquitofish, Gambusia holbrooki, and observed its aggressive interactions with juveniles of the native Australian bass, Macquaria novemaculeata in a laboratory setting. For both species, the magnitudes of intra‐ and inter‐specific aggression were recorded. Regardless of density, the native M. novemaculeata was more aggressive towards heterospecifics than G. holbrooki was. In addition to this, M. novemaculeata was more aggressive to G. holbrooki than towards conspecifics, at both low‐ and high‐density conditions. In contrast, G. holbrooki was similarly aggressive towards M. novemaculeata and G. holbrooki at a high density, yet at low density, displayed significantly more aggression towards conspecifics than M. novemaculeata. These findings demonstrate the importance of considering intra‐specific aggression when exploring behavioural interactions between native and invasive species.  相似文献   

20.
In the present study, the effect of chemical cues from two fish species (mosquitofish and pumpkinseed), at different concentrations, was tested in life history experiments with Daphnia longispina. The two fish species used represent the most abundant planktivores of many Mediterranean shallow lakes (SW Europe), where the indigenous fish communities have been replaced by such exotic assemblages. Results have shown a similar response of D. longispina to both fish species: kairomones stimulated daphnids to produce more offspring, which resulted in higher fitness (r), relatively to a fishless control. Fish presence also induced an earlier first reproduction, a smaller size at maturity of daphnids, and the production of smaller-sized neonates. Significant correlations with fish concentration (indirect measure of fish kairomone concentration) were found for size at maturity and neonate size, for both fish species. These results are in accordance to the “positive response” observed by other authors, which represents a defence mechanism to face losses caused by fish predators. The chemically mediated size reduction of mature females and neonates is an adaptive response to the size-selective predation exerted by fish. Pumpkinseed introduction is very recent in the lake of origin of the daphnids used in the experiments and its kairomone produced similar effects to mosquitofish in the life history of D. longispina. These results are contrary to the existence of a species-specific kairomone and support the hypothesis of a general fish kairomone. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号