首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T7+ phage are unable to plate on a strain of Shigella sonnei D2 371-48. Spontaneous phage mutants arise (ss--mutants) that are able to plate on this strain of Shigella. We have shown by complementation studies and genetic crosses that the ss--mutation maps in gene 10, the structural gene for the major protein of the capsid. This finding implies that the gene 10 protein may interact with a host protein during phage development and that the abortive infection of T7 observed in S. sonnei D2 371-48 with T7+ phage may be a defect in head morphogenesis. Our studies also reveal that various T7 strains commonly contain deletions in nonessential regions. T7 ss--mutants selected after growth of T7+ on Shigella D2 371-48 often acquire a deletion in the 0.7 gene that is not necessary for the ss--phenotype. Finally, we have found a new nonessential region of the T7 chromosome that is located between 33 and 35.5% of the T7 genome length.  相似文献   

2.
Phage T7 adsorbed to and lysed cells of Shigella sonnei D(2) 371-48, although the average burst size was only 0.1 phage per cell (abortive infection). No mechanism of host-controlled modification was involved. Upon infection, T7 rapidly degraded host deoxyribonucleic acid (DNA) to acid-soluble material. Phage-directed DNA synthesis was initiated normally, but after a few minutes the pool of phage DNA, including the parental DNA, was degraded. Addition of chloramphenicol, at the time of phage infection, prevented both the initiation of phage-directed DNA synthesis and the degradation of parental phage DNA. Addition of chloramphenicol 4.5 min after phage was added permitted the onset of phage-directed DNA synthesis but prevented breakdown of phage DNA. Mutants of T7 (ss(-) mutants) have been isolated which show normal growth in strain D(2) 371-48. Upon mixed infection of this strain with T7 wild type and an ss(-) mutant, infection was abortive; no complementation occurred. The DNA of the ss(-) mutants was degraded in mixed infection like that of the wild type. Revertant mutants which have lost their ability to grow on D(2) 371-48 were isolated from ss(-) mutants; they are, in essence, phenotypically like T7 wild type. Independently isolated revertants of ss(-) mutants did not produce ss(-) recombinants when they were crossed among themselves. When independently isolated ss(-) mutants were crossed with each other, wild-type recombinants were found; ss(-) mutants could then be mapped in a cluster compatible with the length of one cistron. We concluded that T7 codes for an active, chloramphenicol-sensitive function [ss(+) function (for suicide in Shigella)] which leads to the breakdown of phage DNA in the Shigella host.  相似文献   

3.
Bacteriophage T7 can extend its host range to include Shigella sonnei D2 371-48 by a mutation called ss found in the T7 major capsid protein, the gene 10 product. We show that a single A-to-C transversion at position 23150 in the T7 genome is responsible for the T7 ss mutant phenotype that allows the phage to avoid DNA degradation and undergo productive infection. The ss mutation causes an amino acid substitution of proline for glutamine at position 61 of the 344-amino-acid T7 major capsid protein.  相似文献   

4.
phiYeO3-12 is a T3-related lytic bacteriophage of Yersinia enterocolitica serotype O:3. The nucleotide sequence of the 39,600-bp linear double-stranded DNA (dsDNA) genome was determined. The phage genome has direct terminal repeats of 232 bp, a GC content of 50.6%, and 54 putative genes, which are all transcribed from the same DNA strand. Functions were assigned to 30 genes based on the similarity of the predicted products to known proteins. A striking feature of the phiYeO3-12 genome is its extensive similarity to the coliphage T3 and T7 genomes; most of the predicted phiYeO3-12 gene products were >70% identical to those of T3, and the overall organizations of the genomes were similar. In addition to an identical promoter specificity, phiYeO3-12 shares several common features with T3, nonsubjectibility to F exclusion and growth on Shigella sonnei D(2)371-48 (M. Pajunen, S. Kiljunen, and M. Skurnik, J. Bacteriol. 182:5114-5120, 2000). These findings indicate that phiYeO3-12 is a T3-like phage that has adapted to Y. enterocolitica O:3 or vice versa. This is the first dsDNA yersiniophage genome sequence to be reported.  相似文献   

5.
J. D. Karam  M. Leach    L. J. Heere 《Genetics》1979,91(2):177-189
T4 phage completely defective in both gene 30 (DNA ligase) and the rII gene (function unknown) require at least normal levels of host-derived DNA ligase (E. coli lig gene) for growth. Viable E. coli mutant strains that harbor less than 5% of the wild-type level of bacterial ligase do not support growth of T4 doubly defective in genes 30 and rII (T4 30- rII- mutants). We describe here two classes of secondary phage mutations that permit the growth of T4 30- rII- phage on ligase-defective hosts. One class mapped in T4 gene su30 (Krylov 1972) and improved T4 30- rII- phage growth on all E. coli strains, but to varying degrees that depended on levels of residual host ligase. Another class mapped in T4 gene 32 (helix-destabilizing protein) and improved growth specifically on a host carrying the lig2 mutation, but not on a host carrying another lig- lesion (lig4). Two conclusions are drawn from the work: (1) the role of DNA ligase in essential DNA metabolic processes in T4-infected E. coli is catalytic rather than stoichiometric, and (2) the E. coli DNA ligase is capable of specific functional interactions with components of the T4 DNA replication and/or repair apparatus.  相似文献   

6.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

7.
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.  相似文献   

8.
9.
10.
Mutants of bacteriophage T3 that lack gene 1.2 resemble wild-type phage T7 in that they are unable productively to infect F plasmid-containing cells of Escherichia coli. Pseudorevertants of a T3 gene 1.2 deletion mutant that have regained the ability to plate efficiently on male cells have been isolated and characterized. At least two mutations in the gene for the major capsid protein are necessary for these phages to bypass F-mediated restriction. One mutation serves to reduce the rate of synthesis of the capsid protein; a second mutation apparently alters an unknown property that is intrinsic to the free, or unassembled form of the protein. During the abortive infection of an F-containing host, synthesis of the wild-type capsid protein directly inhibits further phage development.  相似文献   

11.
DNA was extracted from T5 and BF23 phage carrying amber mutations in genes A2, A1, or D9 and tested for its ability to transfect su minus spheroplasts. DNA from T5 am231, defective in gene A2, transfects Escherichia coli su minus recB minus spheroplasts with an efficiency of 16% of that of wild-type T5 DNA, whereas DNA from T5 am16d or BF23 am57, both defective in gene A1 or its equivalent, transfects E. coli su minus recB minus spheroplasts with an efficiency of 1.4% of that of wild-type T5 DNA, provided E. coli su+ bacteria is used as the indicator in all cases. More than 95% of the progeny from the am231, am16d, and am57 DNA that transfects su minus recB minus spheroplasts is still amber mutant. From these efficiencies of transfection we conclude that the product of gene A2 functions mainly in the mechanism of transfer of phage DNA to intact host cells, and that this function is not essential for transfection of spheroplasts. We also conclude that gene A1 controls functions in addition to DNA transfer, in agreement with previous studies which show that mutations in gene A1 have a pleiotropic effect. Apparently, the absence of these additional functions controlled by gene A1 leads to a high frequency of abortive infection. DNA from amber mutants defective in either gene A1 or A2 does not appreciably transfect su minus rec+ spheroplasts, indicating that the products of these two genes may both be needed to protect T5 DNA from the very active rec BC nuclease in spheroplasts.  相似文献   

12.
Gene 5 of bacteriophage T7 encodes a DNA polymerase essential for phage replication. A single point mutation in gene 5 confers temperature sensitivity for phage growth. The mutation results in an alanine to valine substitution at residue 73 in the exonuclease domain. Upon infection of Escherichia coli by the temperature-sensitive phage at 42 degrees C, there is no detectable T7 DNA synthesis in vivo. DNA polymerase activity in these phage-infected cell extracts is undetectable at assay temperatures of 30 degrees C or 42 degrees C. Upon infection at 30 degrees C, both DNA synthesis in vivo and DNA polymerase activity in cell extracts assayed at 30 degrees C or 42 degrees C approach levels observed using wild-type T7 phage. The amount of soluble gene 5 protein produced at 42 degrees C is comparable to that produced at 30 degrees C, indicating that the temperature-sensitive phenotype is not due to reduced expression, stability, or solubility. Thus the polymerase induced at elevated temperatures by the temperature-sensitive phage is functionally inactive. Consistent with this observation, biochemical properties and heat inactivation profiles of the genetically altered enzyme over-produced at 30 degrees C closely resemble that of wild-type T7 DNA polymerase. It is likely that the polymerase produced at elevated temperatures is a misfolded intermediate in its folding pathway.  相似文献   

13.
Gp7 is a minor capsid protein of the Bacillus subtilis bacteriophage SPP1. Homologous proteins are found in numerous phages but their function remained unknown. Deletion of gene 7 from the SPP1 genome yielded a mutant phage (SPP1del7) with reduced burst-size. SPP1del7 infections led to normal assembly of virus particles whose morphology, DNA and protein composition was undistinguishable from wild-type virions. However, only approximately 25% of the viral particles that lack gp7 were infectious. SPP1del7 particles caused a reduced depolarization of the B. subtilis membrane in infection assays suggesting a defect in virus genome traffic to the host cell. A higher number of SPP1del7 DNA ejection events led to abortive release of DNA to the culture medium when compared with wild-type infections. DNA ejection in vitro showed that no detectable gp7 is co-ejected with the SPP1 genome and that its presence in the virion correlated with anchoring of released DNA to the phage particle. The release of DNA from wild-type phages was slower than that from SPP1del7 suggesting that gp7 controls DNA exit from the virion. This feature is proposed to play a central role in supporting correct routing of the phage genome from the virion to the cell cytoplasm.  相似文献   

14.
The shutoff of host DNA synthesis is delayed until about 8 to 10 min after infection when Escherichia coli B/5 cells were infected with bacteriophage T4 mutants deficient in the ability to induce nuclear disruption (ndd mutants). The host DNA synthesized after infection with ndd mutants is stable in the absence of T4 endonucleases II and IV, but is unstable in the presence of these nucleases. Host protein synthesis, as indicated by the inducibility of beta-galactosidase and sodium dodecyl sulfate-polyacrylamide gel patterns of isoptopically labeled proteins synthesize after infection, is shut off normally in ndd-infected cells, even in the absence of host DNA degradation. The Cal Tech wild-type strain of E. coli CT447 was found to restrict growth of the ndd mutants. Since T4D+ also has a very low efficiency of plating on CT447, we have isolated a nitrosoguanidine-induced derivative of CT447 which yields a high T4D+ efficiency of plating while still restricting the ndd mutants. Using this derivative, CT447 T4 plq+ (for T4 plaque+), we have shown that hos DNA degradation and shutoff of host DNA synthesis occur after infection with either ndd98 X 5 (shutoff delayed) or T4D+ (shutoff normal) with approximately the same kinetics as in E. coli strain B/5. Nuclear disruption occurs after infection of CT447 with ndd+ phage, but not after infection with ndd- phage. The rate of DNA synthesis after infection of CT447 T4 plq+ with ndd98 X 5 is about 75% of the rate observed after infection with T4D+ while the burst size of ndd98 X 5 is only 3.5% of that of T4D+. The results of gene dosage experiments using the ndd restrictive host C5447 suggest that the ndd gene product is required in stoichiometric amounts. The observation by thin-section electron microscopy of two distinct pools of DNA, one apparently phage DNA and the other host DNA, in cells infected with nuclear disruption may be a compartmentalization mechanism which separates the pathways of host DNA degradation and phage DNA biosynthesis.  相似文献   

15.
Under certain conditions the late genes of coliphage T4 may function in the absence of phage DNA replication. Quasi-late gene function is the function of certain late genes in the absence of both phage DNA replication and the product of the maturation gene 55. It does not depend on how phage DNA synthesis is prevented. Replication-uncoupled late gene function is late gene function from unreplicated DNA in the absence of phage ligase, and is still under the control of gene 55. It is most efficient if phage DNA replication is prevented by a mutation in the phage gene (43) for DNA polymerase. Both quasi-late gene function and replication-uncoupled late gene function are enhanced by the presence of mutations controlling a phage exonuclease (gene 46 or 47).  相似文献   

16.
Plasmids expressing bacteriophage T7 gene 1.2 or gene 10 DNA transform F plasmid-containing strains of Escherichia coli only at low efficiency, though they transform plasmid-free strains normally. The gene products T7 gp1.2 and T7 gp10 appear to be the toxic agents, and their effects are directed towards the product of the F pifA gene, PifA. T7 gp1.2 and gp10 are also the two targets of the pif exclusion system of F, and their synthesis normally triggers the abortive infection of T7 in pifA+ hosts. The properties of plasmids containing T7 gene 1.2 or 10 suggest that they can be used to study the molecular mechanisms of phage exclusion in model systems that avoid the pleiotropic dysfunctions associated with an abortive infection.  相似文献   

17.
T4+ exhibits increased ultraviolet sensitivity on derivatives of Escherichia coli K12 or B lacking deoxyribonucleic acid (DNA) polymerase I. However, the sensitivity of T4v is not affected by the absence of host DNA polymerase. T4x and T4y also show increased sensitivity on DNA polymerase-deficient strains, but to a lesser extent than observed with wild-type T4. When T4x or T4y, but not T4+, are plated on a double mutant lacking both DNA polymerase and the uvrA gene product, a partial suppression of the polymerase effect is observed. Host ligase appears to be able to suppress to some extent the T4y phenotype but has no effect on wild-type T4 or other T4 mutants. T4xv incubated in E. coli B or B(s-1) in the presence of chloramphenicol (50 mug/ml) shows increased resistance over directly plated irradiated phage. Increased survival under the same conditions was not observed with T4+ or other T4 mutants. The repair of X-ray-damaged T4 was investigated by examining survival curves of T4+, T4x, T4y, T4ts43, and T4ts30. The repair processes were further defined by observing the effects of plating irradiated phage on various hosts including strains lacking DNA polymerase I or polynucleotide ligase. Two classes of effects were observed. Firstly, the x and y gene products seem to be involved in a repair system utilizing host ligase. Secondly, in the absence of host DNA polymerase, phage sensitivity is increased in an unknown manner which is enhanced by the presence of host uvrA gene product.  相似文献   

18.
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools   总被引:8,自引:0,他引:8  
The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.  相似文献   

19.
Wild-type bacteriophage phie and IS (interference-sensitive) mutants of the related phage SP82G did not productively infect strains of Bacillus subtilis that were lysogenic for temperate phage SPO2. In these abortive infections, the sensitive phages adsorbed to and penetrated the nonpermissive host, phage-directed macromolecular syntheses were initiated, but both viral and bacterial nucleic acid production abruptly stopped about 15 min after addition of the phages. The cessation of RNA and DNA synthesis was preceded or coincident with a reduction in oxygen utilization by the infected cultures. Genetic studies of both phie and SP82G suggest sensitivity to SPO2-mediated abortive infection was controlled by a single gene. A mutant of SPO2, SPO2ehp4-, lysogens of which no longer interfere with the development of SP82GIs, was also isolated. The discovery of this ehp- variant suggests the normal SPO2 prophage synthesized a substance that alters cell physiology in some manner detrimental to SP82GIs development. Since SPO2ehp4- grew on and lysogenized bacteria sensitive to wild-type SPO2, the product of the eph gene was apparently not an essential function of this temperate phage.Overall, these observations exhibit remarkable similarities to the inhibition of T4rII mutants by the product of the rex gene of phage lambda.  相似文献   

20.
Infection of Escherichia coli by a bacteriophage T4 regA, gene 44 double mutant leads to about a 7-fold increase in the amount of RNA ligase obtained after infection by wild-type phage. Using cells infected by the double mutant, RNA ligase was purified to homogeneity with a 20% yield. Unlike previous preparations of this enzyme, the ligase is free of contaminating nuclease and is therefore suitable for intermolecular ligation of DNA substrates. In the course of these studies it was discovered that adenylalation of the enzyme--a step in the reaction pathway--markedly decreased the electrophoretic mobility of RNA ligase through polyacrylamide gels containing sodium dodecyl sulfate. This behavior allows identification of RNA ligase among a mixture of proteins and was used to demonstrate that virtually all of the purified protein is enzymatically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号