首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The objective of this study was to isolate endophytic fungi producing baccatin III from yew for the purpose of baccatin III and paclitaxel manufacture. Surface sterilized bark of Taxus wallichiana var. mairei was used as source material with potato dextrose agar culture medium for isolation of endophytic fungi. Fungal cultures were extracted with a mixture of chloroform/methanol (1:1, v/v) and the baccatin III in the extracts was determined and authenticated with LC–MS. An endophytic fungus that produced baccatin III was identified by ITS rDNA and 26S D1/D2 rDNA sequencing. A total of 192 endophytic fungal strains were isolated from T. wallichiana var. mairei. Only one of the 192 strains produced baccatin III and it was identified as Diaporthe phaseolorum. The productivity of this strain cultured in PDA culture medium was 0.219 mg/l. The isolated endophytic fungus produced baccatin III at a relatively high level and shows promise as a producing strain for baccatin III and paclitaxel manufacture after strain improvement.  相似文献   

2.
The effects of 100 and 200 μM methyl jasmonate (MJA) on cell proliferation and paclitaxel and baccatin III production were investigated in free and alginate immobilized cells of Taxus baccata growing in a selected product formation culture medium. The greatest accumulation of paclitaxel (13.20 mg dm−3) and baccatin III (4.62 mg dm−3) occurred when 100 μM MJA was added to the culture medium of cells entrapped using a 1.5 and 2.5 % alginate solution. The effects of different treatments on the viability of cultured cells and their capacity to excrete both taxanes into the surrounding medium were considered.  相似文献   

3.
Summary Experiments were carried out with Taxus baccata cell lines showing different paclitaxel-producing capacities (between 1.74 and 19.91 mgl−1) when growing in a selected product-formation medium that specifically stimulated the production of taxane to the detriment of cell growth. Through mixing low-, medial- and high-producing lines, it could be observed that paclitaxel productivity in the resulting mixed lines was clearly higher than the mean productivity of the individual lines before mixing. This suggests that culture components generated by high-producing individual lines within the population might induce paclitaxel production. Although the accumulation of paclitaxel and baccatin III was higher when 100 μM methyl jasmonate was added to the subcultures of the mixed lines, the results indicate that exogenously applied methyl jasmonate was not the first factor to stimulate taxane production. The possible effects of methyl jasmonate elicitation and paclitaxel accumulation on cell viability are also considered.  相似文献   

4.
This study assessed the effect of two precursors (l-phenylalanine and p-amino benzoic acid) used alone or in combination with methyl jasmonate, on the growth and accumulation of paclitaxel, baccatin III and 10-deacetylbaccatin III in hairy root cultures of Taxus x media var. Hicksii. The greatest increase in dry biomass was observed after 4 weeks of culturing hairy roots in medium supplemented with 1 μM of l-phenylalanine (6.2 g L−1). Addition of 1 μM of l-phenylalanine to the medium also resulted in the greatest 10-deacetylbaccatin III accumulation (422.7 μg L−1), which was not detected in the untreated control culture. Supplementation with 100 μM of l-phenylalanine together with 100 μM of methyl jasmonate resulted in the enhancement of paclitaxel production from 40.3 μg L−1 (control untreated culture) to 568.2 μg L−1, the highest paclitaxel content detected in the study. The effect of p-amino benzoic acid on taxane production was less pronounced, and the highest yield of paclitaxel (221.8 μg L−1) was observed when the medium was supplemented with 100 μM of the precursor in combination with methyl jasmonate.Baccatin III was not detected under the conditions used in this experiment and the investigated taxanes were not excreted into the medium.  相似文献   

5.
Submerged culture experiments were conducted in three phases to determine the optimal medium for rapidly producing conidia of the fungal bioherbicide Septoria polygonorum. In phase I, 47 crude carbon sources were evaluated to determine which would support sporulation. Under the conditions tested, pea brine (5–10% v/v) provided best conidiation. In phase II, a fractional factorial design was utilized to screen 38 different medium adjuncts in combination with pea brine for improved sporulation. MgSO4 was the only factor that resulted in a significant improvement. In phase III, a central composite design with response surface methodology was used to optimize concentrations of these critical factors. The model predicted optimal sporulation in a medium composed of 8.88% v/v pea brine+0.1 molar MgSO4 with an expected titer of 1.78×108 conidia/ml. Actual mean titer attained with the model-derived medium was 1.15×108 conidia/ml. No significant difference was observed in virulence of conidia produced on agar vs. the model-derived (liquid) medium.  相似文献   

6.
A cell suspension culture of Taxus media was established from a stable callus line of this species. The growth rate and production of paclitaxel and baccatin III of this cell suspension were significantly increased during the shake flask culture in its respective optimum media for cell growth and product formation, which were selected after assaying 24 different culture media. The highest yields of paclitaxel (2.09 mg L(-1)) and baccatin III (2.56 mg L(-1)) in the production medium rose (factors of 7.0 and 3.0, respectively) in the presence of methyljasmonate (220 microg g(-1) FW). When the elicitor was added together with mevalonate (0.38 mM) and N-benzoylglycine (0.2 mM), the increase in the yields of paclitaxel and baccatin III was even higher (factors of 8.3 and 4.0, respectively). Thereafter, a two-stage culture for cell suspension was carried out using a 5-l stirred bioreactor running for 36 days, the first stage being in the cell growth medium until cells entered their stationary growth phase (12 days) and the second stage being in the production medium supplemented with the elicitor and two putative precursors in the concentrations indicated above. Under these conditions, 21.12 mg L(-1) of paclitaxel and 56.03 mg L(-1) of baccatin III were obtained after 8 days of culture in the production medium.  相似文献   

7.
Despite the importance of baccatin III as a precursor to paclitaxel, a widely used chemotherapeutic agent, efficient enzymatic synthesis methods are lacking. Therefore, in this study, the recombinant taxoid 10β-O-acetyl transferase was prepared to produce baccatin III in vitro. The recombinant enzyme could use vinyl acetate, butyl acetate, sec-butyl acetate, isobutyl acetate, amyl acetate, and isoamyl acetate as novel and cheap alternative acetyl group donors to replace the expensive acetyl CoA for the enzymatic synthesis of baccatin III. A molecular docking study further confirmed that these acetyl donors could reasonably bind to the enzyme molecule. Using the aqueous two-phase bio-catalytic reaction system, hexane and ethyl acetate could increase the yield of product baccatin III by 2.8% and 1.1% respectively. This approach using novel and cheap acetyl donors is promising for the enzymatic synthesis of baccatin III for the future industrial production of paclitaxel.  相似文献   

8.
采用液体发酵蝉拟青霉,对蝉拟青霉的发酵条件进行优化,以提高蝉拟青霉胞外多糖产量及生物量。摇瓶发酵条件下,在单因素基础上设计正交实验确定各因素的最佳组合。优化后得最佳发酵培养基:蔗糖8%,牛肉膏0.75%,酵母膏0.125%,MgSO_4·7H_2O 0.3%,KH_2PO_4 0.2%,麸皮0.5%。该条件下胞外多糖产量为5.96 g/L,生物量为42 g/L,较优化前提高了1倍。采用发酵罐进行扩大培养,对分批发酵时的初糖浓度进行了优化,并分析了补料分批发酵对发酵过程的影响。发酵罐培养时最适初糖浓度为5%,此时生物量最高为38 g/L,多糖含量最高为5.5 g/L;采用补料分批发酵时,多糖产量最高为5.89 g/L,生物量最高为40 g/L,效果优于分批发酵。  相似文献   

9.
Cell suspension cultures of Taxus canadensis and Taxus cuspidata rapidly produced paclitaxel (Taxol) and other taxoids in response to elicitation with methyl jasmonate. By optimizing the concentration of the elicitor, and the timing of elicitation, we have achieved the most rapid accumulation of paclitaxel in a plant cell culture, yet reported. The greatest accumulation of paclitaxel occurred when methyl jasmonate was added to cultures at a final concentration of 200 microM on day 7 of the culture cycle. The concentration of paclitaxel increased in the extracellular (cell-free) medium to 117 mg/day within 5 days following elicitation, equivalent to a rate of 23.4 mg/L per day. Paclitaxel was only one of many taxoids whose concentrations increased significantly in response to elicitation. Despite the rapid accumulation and high concentration of paclitaxel, its concentration never exceeded 20% of the total taxoids produced in the elicited culture. Two other taxoids, 13-acetyl-9-dihydrobaccatin III and baccatin VI, accounted for 39% to 62% of the total taxoids in elicited cultures. The accumulation of baccatin III did not parallel the pattern of accumulation for paclitaxel. Baccatin III continued to accumulate until the end of the culture cycle, at which point most of the cells in the culture were dead, implying a possible role as a degradation product of taxoid biosynthesis, rather than as a precursor.  相似文献   

10.
Various carbon and sulfur sources on the growth and desulfurization activity of Mycobacterium strain G3, which is a dibenzothiophene (DBT)-degrading microorganism, were studied. Ethanol, glucose or glycerol as the sole carbon source and MgSO4, taurine or dimethyl sulfoxide (DMSO) as the sole sulfur source were suitable for the growth. In addition, desulfurization activity was expressed in medium containing taurine, MgSO4 or DMSO at 0.1 mM, when 217 mM ethanol was used as the sole carbon source. The highest desulfurization activity was in the stationary phase cells after 5 days' growth, rather than those harvested during active growth, when Mycobacterium G3 was cultivated in medium containing 217 mM ethanol and 0.1 mM MgSO4. Thus alternative sulfur sources to DBT can be used for the cultivation of this desulfurizing microorganism.  相似文献   

11.
Summary Optimization of medium composition and pH for chitinase production by the Alcaligenes xylosoxydans mutant EMS33 was carried out in the present study and the optimized medium composition and conditions were evaluated in a fermenter. The medium components screened initially using Plackett–Burman design were (NH4)2SO4, MgSO4 7H2O, KH2PO4, yeast extract, Tween 20 and chitin in shake flask experiments. The significant medium components identified by the Plackett–Burman method were MgSO4 7H2O, Tween 20 and chitin. Central composite response surface methodology was applied to further optimize chitinase production. The optimized values of MgSO4 7H2O, Tween 20, chitin and pH were found to be 0.6 g/l, 0.05 g/l, 11.5 g/l and 8.0, respectively. Chitinase and biomass production of Alcaligenes xylosoxydans EMS33, was studied in a 2-l fermenter containing (g/l): chitin, 11.5; yeast extract, 0.5; (NH4)2SO4, 1; MgSO4 7H2O, 0.6; KH2PO4, 1.36 and Tween 20, 0.05. The highest chitinase production was 54 units/ml at 60 h and pH 8.0 when the dissolved O2 concentration was 60%, whereas the highest biomass production was achieved at 36 h and pH 7.5 without any dissolved O2 control.  相似文献   

12.
To achieve a better understanding of the metabolism and accumulation of paclitaxel and baccatin III in cell cultures of Taxus, inhibitors of the early steps in the terpenoid pathway were applied to a cell suspension culture of Taxus baccata: fosmidomycin as an inhibitor of the non-mevalonate branch of the pathway, and mevinolin as an inhibitor of the mevalonate branch. Synthesis of both taxanes in the cell suspension was first increased when cultured in the product formation medium supplemented with methyljasmonate (100 microM). The product formation medium was selected after assaying 24 different culture media. When fosmidomycin (200 microM) was added to the product formation medium together with the elicitor, the accumulation of paclitaxel and baccatin III was reduced by up to 3.0 and 1.5 times, respectively, whereas the inhibitory effect of mevinolin (1 microM) was only clearly exerted in the case of paclitaxel. Under the conditions of our experiment, we conclude that in the synthesis of both taxanes, the non-mevalonate pathway is the main source of the universal terpenoid precursor isopentenyl diphosphate (IPP).  相似文献   

13.
TwoTaxus (T. chinensis andT. baccata) cell suspension cultures were used as a model system to demonstrate the similarities of biomass accumulation and secondary metabolite (taxane) production obtained from cultures in six-well polystyrene plates and glass shake flasks (25 ml and 125 ml). Interference from binding of taxanes in cell-free culture broth to the polystyrene plates was minimal with 85% of the paclitaxel (Taxol®) and 100% of baccatin and 10-deacetyl-7-xylosyl-taxol remaining in the medium after 24 h beyond which no further binding was observed. A simple thin layer chromatography (TLC) procedure with a chloroform: acentonitrile (4:1) solvent system on silica gel was developed to simultaneously test up to 17 cultures for taxane production. The combination of six-well plate technology for experimentation and TLC for rapid taxane analysis can greatly accelerate the establishment of conditions for an optimalTaxus plant-cell culture process for taxane production.Abbreviations TLC Thin layer chromatography - 2,4D 2,4-dichlorophenoxyacetic acid - HPLC high pressure liquid chromotography - UV ultraviolet - Rf retention factor  相似文献   

14.
Thirty-five strains capable of secreting extracellular alkaline proteases were isolated from the soil and waste water near the milk processing plant, slaughterhouse. Strain APP1 with the highest-yield alkaline proteases was identified as Bacillus sp. The cultural conditions were optimized for maximum enzyme production. When the initial pH of the medium was 9.0, the culture maintained maximum proteolytic activity for 2,560 U ml−1 at 50°C for 48 h under the optimized conditions containing (g−1): soyabean meal, 15; wheat flour, 30; K2HPO4, 4; Na2HPO4, 1; MgSO4·7H2O, 0.1; Na2CO3, 6. The alkaline protease showed extreme stability toward SDS and oxidizing agents, which retained its activity above 73 and 110% on treatment for 72 h with 5% SDS and 5% H2O2, respectively.  相似文献   

15.
16.
Statistical experimental design was used to optimize medium constituents for emulsan production by Acinetobacter venetianus RAG-1 in batch cultivation. The factors affecting emulsan production were screened by a two-level factorial design, and the optimal concentration of medium constituents for emulsan production were determined by the method of steepest path ascent and central composite experimental design. Experimental results showed that the optimal medium constituents were 9.16 g/L ethanol, 8.2 g/L KH2PO4, 23.32 g/L K2HPO4, 5.77 g/L (NH4)2SO4 and 0.354 g/L MgSO4•7H2O. Under this optimal composition, the predicted emulsan production was 72.198 mg/L, and experimental value was 73.312 mg/L for 80 h culture in the shake flasks, and the emulsan yield by A. venetianus RAG-1 was enhanced nearly 1.48-fold (from 49.5 to 73.312 mg/L). Based on the results, we identify the optimal medium constituents for emulsan production and could take advantage of strategy for scale up the fermentation of emulsan production.  相似文献   

17.
One step more towards taxane production through enhanced Taxus propagation   总被引:1,自引:0,他引:1  
We have developed a high-yielding procedure for the in vitro propagation of juvenile material of Taxus baccata involving a combination of seed handling and culture on WP culture medium supplemented with sucrose (2%), activated charcoal (0.5%) and BAP (22.19 mM) for 30 days, followed by 40 days on hormone-free medium. Shoot apical ends should be decapitated to obtain propagation rates up to 12- to 18-fold per subculture period (70 days). In this way the high genetic variability of the juvenile material can be used in the most productive way. In addition to producing large numbers of yew plants (difficult to get by traditional methods), this procedure allows the fast screening of individuals for their taxane content. A negative correlation between growth and secondary metabolite content was found for paclitaxel. The positive correlation with 10-deacetyl baccatin III accumulation reflects once more the commercial viability of using 10-deacetyl baccatin III extraction as an alternative to taxane production, but this time opening up the possibility of selecting genotypes with both characteristics: fast growth and high productivity. Received: 12 July 1999 / Revision received: 22 November 1999 / Accepted: 22 November 1999  相似文献   

18.
An isocratic high-performance liquid chromatographic method has been developed and validated for the quantitative determination of paclitaxel (Taxol®), a novel antimitotic, anticancer agent, in human plasma. The analysis required 0.5 ml of plasma, and was accomplished by detection of the UV absorbance of paclitaxel at 227 nm following extraction and concentration. The method involved extraction of paclitaxel from plasma, buffered with 0.5 ml of 0.2 M ammonium acetate (pH 5.0), onto 1-ml cyano Bond Elut columns. The eluent was evaporated under nitrogen and low heat, and reconstituted with the mobile phase, acetonitrile-methanol-water (4:1:5, v/v/v) containing 0.01 M ammonium acetate (pH 5.0). The samples were chromatographed on a reversed-phase octyl 5 μm column. The retention time of paclitaxel was 10 min. The validated quantitation range of the method was 10–1000 ng/ml (0.012–1.17 μM) of paclitaxel in plasma. Standard curve correlation coefficients of 0.995 or greater were obtained during validation experiments and analysis of clinical study samples. The observed recovery for paclitaxel was 83%. Epitaxol, a biologically active stereoisomer, and baccatin III, a degradation product, were also chromatographically separated from taxol by this assay. The method was applied to samples from a clinical study of paclitaxel in cancer patients, providing a pharmacokinetic profiling of paclitaxel.  相似文献   

19.
Summary Response surface methodology was applied to optimize medium components for maximum production of a thermostable α-galactosidase by thermotolerant Absidia sp. WL511. First, the Plackett-Burman screening design was used to evaluate the effects of variables on enzyme production. Among these variables, MgSO4 and soybean meal were identified as having the significant effects (with confidence level (90%). Subsequently, the concentrations of MgSO4 and soybean meal were further optimized using central composite designs. The optimal parameters were determined by response surface and numerical analyses as 0.0503% (g/g) MgSO4 and 0.406% (g/g) soybean meal and allowed α-galactosidase production to be increased from 4.4 IU g−1 to 117.8 IU g−1. The subsequent verification experiments confirmed the validity of the model. The optimum pH of enzymatic activity was 7.5 and the enzyme was stable at pH values ranging from 5.0 to 9.0. The optimum temperature was 73 °С. The enzyme was fairly stable at temperatures up to 60 °С and had 87% of its full activity at 65 °С after 2 h of incubation.  相似文献   

20.
Summary A higher producer of ascospores and pigments, Monascus strain TTWMB 6042, was used to study regulation of pigment production by nutrients. An initial medium containing 4% glucose, 0.3% NH4NO3 (75 mm nitrogen) and inorganic salts was used. We found that the formation of red pigments in this strain, measured by optical density at 500 nm (OD500) was strongly stimulated by monosodium glutamate (MSG) as the sole nitrogen source. The choice of carbon source and an initial pH of pH 5.5 were also important. High concentrations of phosphate and MgSO4 were inhibitory to pigment production. A new chemically defined medium was devised containing 5% maltose, 75 mm MSG, phosphate and MgSO4 at lower concentrations plus other mineral salts, which yielded a tenfold increase in OD500 and a reversal of the pigment location from predominantly cell-bound, including both intracellular and surface-bound pigments, to mainly extracellular. Offsprint requests to: A. L. Demain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号